Evaluation on Dielectric Properties of Epoxy/Montmorillonite Nanocomposites

에폭시/몬모릴로나이트 나노복합재료의 유전특성 평가

  • Jang, Yong-Kyun (Department of Materials Science & Engineering, Korea University) ;
  • Kim, Woo-Nyon (Department of Chemical & Biological Engineering, Korea University) ;
  • Kim, Jun-Kyung (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Park, Min (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Ho-Gyu (Department of Materials Science & Engineering, Korea University)
  • 장용균 (고려대학교 신소재공학과) ;
  • 김우년 (고려대학교 화공생명공학과) ;
  • 김준경 (한국과학기술연구원 고분자하이브리드센터) ;
  • 박민 (한국과학기술연구원 고분자하이브리드센터) ;
  • 윤호규 (고려대학교 신소재공학과)
  • Published : 2006.11.30

Abstract

The epoxy composites are prepared with mixing temperature of epoxy/montmorillonite (MMT) melt master batch and the dielectric properties of the composites are also compared with intercalation of MMT. The exfoliation mainly occurrs iii the low content of MMT composites, while in the composites with high content of MMT the interspacing distance increases as the mixing temperature of epoxy/MMT master batch is increased. Class transition temperature of the composite which the MMT are effectively exfoliated is increased with the appropriate postcuring condition. Since the orientation polarization of dipoles in the epoxy molecules is restricted by the clay nanolayers exfoliated, the dielectric constant and dielectric loss of the composites are reduced. Furthermore, the dielectric properties could be improved by controling the mixing temperature and time of epoxy/MMT master batch as well as postcuring condition.

에폭시/몬모릴로나이트(MMT) master batch의 혼합온도를 달리하여 복합재료를 제조하였으며, MMT의 박리에 의한 복합재료의 유전특성을 비교하였다. MMT 함량이 낮은 복합재료에서 MMT의 박리가 지배적으로 발생하였으며, 고함량의 MMT 복합재료에서는 master batch 제조온도가 증가할수록 MMT의 층간거리가 증가하였다. 박리가 지배적인 저함량의 MMT 복합재료에서는 적절한 후경화 조건에 의해 유리전이온도가 증가되는 것을 알 수 있었다. MMT의 박리가 효과적으로 발생한 복합재료에서는 에폭시 분자구조의 배향분극이 억제됨으로써 유전율과 유전손실이 감소하였으며, 에폭시/MMT master batch의 혼합온도 및 시간, 그리고 복합재료의 후경화 조건에 따라서 복합재료의 유전특성을 향상시킬 수 있었다.

Keywords

References

  1. M. G. Pecht, L. T. Nguyen, and E. B. Hakim, Plasticencapsulated Microelectronics: Materials, Processes, Quality, RelIability, and Application, John Wiley & Sons, Inc., New York, Chap. 2, 1995
  2. 'Present State and Future Prospect of 2005 Electronics Polymer Materials (Japanese)', Fuji Chimera Research Institute, Inc., Tokyo, 2005
  3. C. Shibata, 'Polymeric Materials and Microwave Properties', in Development of Plastic Materials for Microwave Applications (Japanese) , F. Baba, Editor, CMC, Tokyo, Chap 2 (2005)
  4. K. Igarashi, Japanese Patent 354754 (2001)
  5. Y. Usami, S. Demura, K Fujimura, and K Takahashi, Japanese Patent 82063 (2003)
  6. I. Komuku, M. Hirai, and T. Imada, Japanese Patent 240654 (2001)
  7. T. Hirai and T. Imura, Japanese Patent 252951 (2003)
  8. K. Ishii, Y. Norisue, S. Hiramatsu, and M. Miyamoto, Japanese Patent 206333 (2003)
  9. T. Yoshida, Japanese Patent 256137 (2002)
  10. T. Suwa, Japanese Patent 69156 (2002)
  11. J. W. Gilman, Appl. Clay Sci., 15, 31 (1999) https://doi.org/10.1016/S0169-1317(99)00019-8
  12. P. C. Lebaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  13. S.-U. Lee, I.-H Oh, J. H. Lee, K-Y. Choi, and S.-G. Lee, Polymer(Korea), 29, 271 (2005)
  14. T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, J. Phys. Chem. Solid, 57,1005 (1996) https://doi.org/10.1016/0022-3697(95)00388-6
  15. J.-D. Nam, S. D. Hwang, H. R. Choi, J. H. Lee, K. J. Kim, and S. Heo, Smart Mater. Struct., 14, 87 (2005) https://doi.org/10.1088/0964-1726/14/1/009
  16. C. C. Ku and R. Liepins, Electrical Properties of Polymers: Chemical Principles, Hanser Publishers, New York, p. 335 (1987)
  17. E. P. M. Williams, J. C. Seferis, C. L. Wittman, G. A. Parker, J. H. Lee, and J.-D. Nam, J. Polym. Sci. B, 42, 1 (2004)