Preparation and Properties of Celluose Diacetate/Starch Composite

Cellulose Diacetate/Starch 복합체의 제조 및 물성

  • Lee, Sang-Yool (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Seung-Kyung (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lim, Hwan-Kyu (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kye, Hyoung-San (Department of Design & Materials, Mokwon University) ;
  • Lee, Young-Kwan (Department of Chemical Engineering, Sungkyunkwan University)
  • 이상율 (성균관대학교 응용화학부) ;
  • 이승경 (성균관대학교 응용화학부) ;
  • 임환규 (성균관대학교 응용화학부) ;
  • 계형산 (목원대학교 디자인소재공학과) ;
  • 이영관 (성균관대학교 응용화학부)
  • Published : 2006.11.30

Abstract

In order to successfully meet the environmental and recycling problems, natural polymer and their derivatives are recognized as a promising biodegradable material. In this study, the biodegradable composites of cellulose diacetate and starch were prepared, and their physical and thermal properties were investigated. For the melting processing, triacetine was added as a plasticizer into the composites. The processability of cellulose diacetate was further enhanced by increasing the amount of starch in the composites. The tensile stress and Young's modulus were decreased and elongation was increased with increasing the amount of starch in them. A $T_g$ value was decreased with increasing the amount of starch in the composites. Also, the morphology of the composites were observed with the SEM.

최근 환경문제가 대두되면서 기존의 석유계 플라스틱을 대체할 생분해성 플라스틱에 관심이 고조되고 잇다. 이에 본 실험에서는 토양에서 생분해가 가능한 셀룰로오스 디아세테이트/전분 혼합체를 제조하여 그 특성을 연구하였다. 이 혼합체에 가소제로 트리아세틴을 첨가하여 용융가공한 복합체의 물성을 조사하였다. 전분의 함량이 증가할수록 이 복합체의 가공성이 향상되며 인장강도와 탄성률은 감소하고 신율은 증가하였다. 전분의 함량이 증가하면 복합체의 $T_g$는 감소하였다. SEM을 이용하여 전분의 복합체내에서의 분산성을 관찰하였다.

Keywords

References

  1. O.B. Wurzburg, Ed., Modified Starches; Properties and Uses, CRC Press, Boca Raton, Florida, p.277 (1986)
  2. L. Brandt, Cellulose ethers, in 'Ullmann's Encyclopedia of Industrial Chemistry', F. T. Campbell, R. Pfefferkorn, and J. F. Rounsaville, Editors, VCH Verlagsgesellschaft, Weinheim. p,461 (1986)
  3. Y. E. M. van der Burgt, J. Bergsma, I. P. Bleeker, P. J. H. C. Mijland, A. Van der Kerk-van Hoof. J. P. Kamerling, and J. F. G. Vliegenthart, Sterch/Starke., 40, 52 (2000)
  4. G. J. L. Griffin, U.S. Patent 4,021, 355 (1977)
  5. G. J. L. Griffin, U.S. Patent 4,125, 495 (1977)
  6. J. L. Willett, B. K. Jasberg, and L. L. Swanson, Melt rheology of thermoplastic starch, polymers from agricultural coproducts, 575 (chap. 3), 50 (1994)
  7. A. A. S. Curvelo, A. J. F. de Carvalho, and J. A. M. Agnelli, Cerbohyd. Polym., 45 183 (2001) https://doi.org/10.1016/S0144-8617(00)00314-3
  8. R. L. Shogren, J. W. Lawton, K. F. Tiefenbacher, and L. Chen, J. Appl. Polym. Sci., 68, 2129 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980627)68:13<2129::AID-APP9>3.0.CO;2-E
  9. S. Baumberg, C. Lapierre, B. Monties, and C. Della Valle, Polym. Degrad. Stabil., 59, 273 (1998) https://doi.org/10.1016/S0141-3910(97)00193-6
  10. C. Bastioli, 'Degradable Polymers: Principles and Applications', G. Scott and D. Gilead, Editors, Chapman & Hall, London, p.112-137 (1995)
  11. D. I. Ryu, G. S. Yang, and J. Y. Choi, Polym. Sci. and Tech., 8, 530 (1997)
  12. L. Y. Mwaikambo and M. P. Ansell, Angew. Makromol. Chem., 272, 108 (1999) https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<108::AID-APMC108>3.0.CO;2-9
  13. X. Lu. M. Q. Zhang, M. Z. Rong, G. Shi, G. C. Yang, and H. M. Zeng, Adv. Compos. Lett., 8, 231 (1999)
  14. D. N. S. Hon and M. S. L. Josefina, J. Polym. Sci., Part A: Polym. Chem., 27, 4143 (1989) https://doi.org/10.1002/pola.1989.080271221
  15. D. N. S. Hon and N. J. Ou, J. Polym. Sci.; Part A: Polym. Chem., 27, 2457 (1989) https://doi.org/10.1002/pola.1989.080270725
  16. S. H. Lee, S. Y. Lee, J. D. Nam, and Y. K. Lee, Polymer(Korea), 30, 70 (2006)
  17. U. Riedel and J. Nickel, Die Angewandte Makromole-kulare Chemie., 272, 34 (1999) https://doi.org/10.1002/(SICI)1522-9505(19991201)272:1<34::AID-APMC34>3.0.CO;2-H
  18. M. Wollerdorfer and H. Bader, Ind. Corps. Products, 8, 105 (1998) https://doi.org/10.1016/S0926-6690(97)10015-2
  19. A. Amash and P. Zugenmaier, Polymer, 41, 1589 (2000) https://doi.org/10.1016/S0032-3861(99)00273-6
  20. A. Dufresne and M. R. Vignon, Macromolecules, 31, 2693 (1998) https://doi.org/10.1021/ma971532b
  21. A. Dufresne, D. Dupevre, and M. R. Vignon, J. Appl. Sci., 72, 2080 (2000)
  22. R. T. Woodhams, G. Thomas, and D. K. Rodgers, Polym. Eng. Sci., 24,1166 (1984) https://doi.org/10.1002/pen.760241504
  23. U. Funke, W. Bergthaller, and M. G. Lindhauer, Polym. Degrad. Stabil., 59, 293 (1998) https://doi.org/10.1016/S0141-3910(97)00163-8
  24. C. Albano, J. Gonzalez, M. Ichazo, and D. Kaiser, Polym. Degrad. Stabil., 66,179 (1999) https://doi.org/10.1016/S0141-3910(99)00064-6
  25. N. E. Marcovich, M. M. Reboredo, and M. I. Aranguren, Thermochimics Acta, 372, 45 (2001) https://doi.org/10.1016/S0040-6031(01)00425-7
  26. V. A. Alvarez and A. Vazquez, Polym. Degrad. Stabil., 84, 16 (2004)
  27. P. W. Law, A. Longdon, and G. G. Willins, Marcromol. Syrnp., 208, 293 (2004)
  28. L. A. Pothan, Z. Oommen, and S. Thomas, Compos. Sci Technol., 63, 223 (2003)
  29. H. Wang, X. Sun, and P. Seib, J. Appl. Polym. Sci., 84, 1259 (2002)