폴리(비닐 알코올) 나노복합체 필름(II) : 열적-기계적 성질 및 모폴로지

Poly(vinyl alcohol) Nanocomposite Films (II): Thermo-mechanical Properties and Morphology

  • 함신균 (금오공과대학교 고분자공학과) ;
  • 정민혜 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Ham, Shin-Kyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jung, Min-Hye (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 발행 : 2006.11.30

초록

폴리(비닐 알코올) (PVA)과 폴리아크릴산-말레산-공중합체(PAM)의 블렌드를 수용액 상태로 얻은 후 점토인 사포나이트(SPT)를 분간시켜 필름 형태인 PVA/PAM/SPT의 나노복합재료를 합성하였다. 용액 삽입법을 이용하여 점토 함량을 0-9 wt%의 다양한 농도로 변화시켜 얻은 나노복합재료에 대해 분산도, 모폴로지 및 열적-기계적 성질 등을 각각 조사하였다. 점토 함량이 3 wt%일 때 점토 입자는 PVA/PAM 블렌드에 잘 분산되었으며, 점토함량이 7 wt%보다 많을 경우에는 고분자 모체에 일부 뭉친 구조가 관찰되었다. 나노복합재료의 열적 안정성은 점토함량이 9 wt%로 증가할 때까지 꾸준히 증가하였다. 인장 강도와 초기인장 탄성률은 점토 함량이 7 wt%일 때 최고값을 나타내었으나 그 이상의 점토 농도에서는 오히려 감소하였다. 본 연구 결과로부터 소량의 점토 첨가는 PVA/PAM 나노복합재료 필름의 열적, 기계적 성질을 증가시키는데 도움이 된다는 것을 알았다.

Blends of poly(acrylic acid- co-maleic acid) (PAM) with poly (vinyl alcohol) (PVA) were pre -pared in distilled water PVA/PAM/saponite (PVA/PAM/SPT) nanocomposite films were prepared with various clay contents by using the solution intercalation method. The variations of the dispersion, morphology, and thermo-mechanical properties of the nanocomposites with clay content in the range 0 to 9 wt% were examined. Up to 3 wt% clay loading, the clay particles were homogeneously dispersed in the PVA/PAM blends. However, some agglomerated structures form in the polymer matrix above a clay content of 7 wt%. The thermal stability of the hybrids was increased linearly with increasing the clay loading up to 9 wt%. The maximum strength and modulus were obtained at a clay content of 7 wt%. Thus, the addition of small amounts of clay to the PVA/PAM blends produced PVA/PAM nano-composites with improved the thermo-mechanical properties.

키워드

참고문헌

  1. K. E. Strawhecker and E. Manias, Chem. Mater., 2, 2943 (2000)
  2. I. Cendoya, L. Lopez, A. Alegria, and C. Mijangos, J. Polym. Sci.; Part B: Polym. Phys., 39,1968 (2001) https://doi.org/10.1002/polb.1172
  3. K. Nakane, T. Yamashita, K. Iwakura, and F. Suzuki, J. Appl. Polym. Sci., 74,133 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
  4. F. Suzuki, K. Nakane, and J. S. Piao, J. Mater. Sci., 31. 1335 (1996) https://doi.org/10.1007/BF00353114
  5. G. Legaly, Smectitic Clays as Ionic Macromolecules. Elsevier, London, 1986
  6. P. C. LeBaron, Zhen Wang, and J. P. Thomas, Appl. Clay Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  7. Y. Kojima, A. Usuki, M. Kawasumi, and A. Okada, J. Mater. Res., 8,1185 (1993) https://doi.org/10.1557/JMR.1993.1185
  8. P. B. Messersmith and E. P. Giannelis. Chem. Mater., 5. 1064 (1993) https://doi.org/10.1021/cm00032a005
  9. K. Yano, A. Usuki, T. Kurauchi, and O. Kamigaito, J. Polym. Sci.; Part A: Polym. Chem., 31. 2493 (1993) https://doi.org/10.1002/pola.1993.080311009
  10. J.-H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, and G. S. Sur, J. Appl. Polym. Sci., 90, 3208 (2003) https://doi.org/10.1002/app.12996
  11. J. W. Gilman, Appl. Clay Sci., 15, 31 (1999) https://doi.org/10.1016/S0169-1317(99)00019-8
  12. N. Ogata, S. Kawakage, and T. Ogihara, J. Appl. Polym. Sci., 66, 573 (1997) https://doi.org/10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W
  13. G. Lagaly, Appl. Clay Sci., 15, 1 (1999) https://doi.org/10.1016/S0169-1317(99)00009-5
  14. G. Lagaly, Developments in Ionic Polymers, Elsevier, London, Vol. 2, pp 77-140 (1986)
  15. W. F. Jaynes and J. M. Bigham, Clays and Clay Minerals, 35, 440 (1987) https://doi.org/10.1346/CCMN.1987.0350604
  16. E. P. Giannelis, Adv. Mater., 8, 29 (1996) https://doi.org/10.1002/adma.19960080104
  17. L. A. Utracki, Clay-Containing Polymeric Nanocomposites, Rapra Technology Ltd., Shawbury, Vol. 1, Chap. 1 (2004)
  18. S. K. Ham, M. H. Jung, and J.-H. Chang, Polymer (Korea), 30, 1 (2006)
  19. S. H. Hsiao, G. S. Liou, and L. M. Chang, J. Appl. Polym. Sci., 80, 2067 (2001) https://doi.org/10.1002/app.1306
  20. Y. Ke, J. Lu, X. Yi, J. Zhao, and Z. Qi, J. Appl. Polym. Sci., 78, 808 (2000) https://doi.org/10.1002/1097-4628(20001024)78:4<808::AID-APP140>3.0.CO;2-9
  21. J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004) https://doi.org/10.1016/j.polymer.2004.05.012
  22. J. - H. Chang, M. K. Mun, and I. C. Lee, J. Appl. Polym. Sci., 98, 2009 (2005) https://doi.org/10.1002/app.22382
  23. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Chem. Mster., 8, 2628 (1996) https://doi.org/10.1021/cm960102h
  24. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001) https://doi.org/10.1021/ma000565f
  25. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003) https://doi.org/10.1002/app.11884
  26. J.-H. Chang, B. S. Seo, and D. H Hwang, Polymer, 43, 2969 (2002) https://doi.org/10.1016/S0032-3861(02)00125-8
  27. H. R. Frischer, L. H. Gielgens, and T. P. Koster, M. Acta. Polym., 50, 122 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  28. T. Agag and T. Takeichi, Polymer, 41, 7083 (2000) https://doi.org/10.1016/S0032-3861(00)00064-1
  29. T. D. Fornes, P. J. Yoon, D. Lunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002) https://doi.org/10.1016/S0032-3861(02)00400-7
  30. S. Y. Narn, K. S. Sung, S. W. Chon, and J. W. Rhim, Membrane J., 12, 255 (2002)
  31. J.-H. Chang and B. Y. Jo, J. Appl. Polym. Sci., 60, 939 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960516)60:7<939::AID-APP3>3.0.CO;2-N
  32. K. K. Chawla, Composite Materials Science and Engineering, Springer-Verlag, New York, 1987
  33. W. A. Curtin, J. Am. Ceram Soc., 74, 2837 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06852.x