Synthesis of Almost Fully Quavternized Poly(4-vinylpyridine)s by Polymer Reaction and Aggregation Property with Sodium Dodecyl Sulfate

고분자 반응에 의한 거의 완전 4차화된 폴리(4-비닐피리딘)의 합성 및 도데실 황산 소듐과의 응집 특성

  • Sim, Hoo-Sik (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Choi, E-Joon (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Young-Chul (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Il-Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 심후식 (금오공과대학교 고분자공학과) ;
  • 최이준 (금오공과대학교 고분자공학과) ;
  • 김용철 (금오공과대학교 고분자공학과) ;
  • 박일현 (금오공과대학교 고분자공학과)
  • Published : 2006.11.30

Abstract

Quarternized poly(4-vinyl pyridine)s have been prepared by the reaction of poly (4-vinyl pyridine)s (Mw=50 kg/mol and 200 kg/mol) and alkylating agents varying the carbon numbers of the alkyl groups (m):dimethyl sulfate (m=1) as well as bromoalkane (m= 5, 8, 12, 16, and 22) was used as an alkylating agent. The degree of alkylation was determined by using an elemental analysis and NMR spectroscopy. As a result, polyelectrolytes were obtained by the almost full alkylation of poly (4-vinyl pyridine)s. The critical aggregation concentration (CAC) was determined by measuring the change of turbidity occurred by addition of sodium dodecyl sulfate (SDS) into aqueous solution of quarternized poly-(4-vinyl pyridine)s, and the dependence of molecular weight of polymer, the length of N-alkyl group and concentration of NaCl upon CAC was investigated. As a result, as the molecular weight or the length of alkyl group was increased, less amount of SDS Gould induce the aggregation.

분자량이 다른 두 가지 폴리(4-비닐피리딘) (Mw=50 kg/mol 및 200 kg/mol)을 알킬기의 탄소수(m)를 변화시키면서 N-알킬화시켜 이온성 고분자를 합성하였다. 알킬화제로서 디메틸 설페이트(m=1) 및 브롬화 알칸(m=5, 8, 12, 16 및 22)을 사용하였다. 합성한 이온성 고분자의 조성은 NMR 분광분석법 및 원소분석법을 사용하여 결정하였다. 그 결과로써 거의 완전한 4차 알킬화 반응에 의해 전해질 고분자가 얻어졌음을 알 수 있었다. 합성한 전해질고분자의 수용액에 도데실 황산 소듐(SDS)을 첨가 시 발생되는 탁도 변화를 조사하여 임계응집농도(CAC)를 결정하였으며, 이러한 CAC가 고분자의 분자량, N-알킬기의 길이 및 NaCl의 농도 변화에 어떻게 의존하는가를 조사하였다. 결과로써 폴리(4-비닐피리딘)의 분자량이 클수록 또한 알킬 곁사슬의 길이가 길수록 더 적은 양의 SDS 첨가로도 응집체가 형성되었음을 알 수 있었다.

Keywords

References

  1. R. Jerome and M. Mazurek, lonomers, M. R. Tant, K. A. Mauritz, and G. L. Wilkes, Editors, Blackie Academic and Professional, London, Chap. 1, p. 3 (1997)
  2. H. Dautzenberg, W. Jaeger, J. Kotz, B. Philipp, Ch. Seidel, and D. Stscherbina, Polyelectrolytes, Hanser Publishers, Munich, Chap. 3, p. 112 (1994)
  3. S. Forster, M. Schmidt, and M. Antonietti, J. Phys. Chem., 96, 4008 (1992) https://doi.org/10.1021/j100189a019
  4. Y. Wang, K. Kozue, H. Qingrong, and L. D. Paul, Macromolecules, 32, 7128 (1999) https://doi.org/10.1021/ma990972v
  5. O. E. Philippova, D. Hourdet, R. Audebert, and A. R. Khokhlov, Macromolecules, 29, 2882 (1996)
  6. O. Anthony and R. Zana. Langmuir, 12, 1967 (1996) https://doi.org/10.1021/la950817j
  7. O. Anthony and R. Zana. Langmuir, 12, 3590 (1996) https://doi.org/10.1021/la960184o
  8. H. Okuzaki and Y Osada, Macromolecules, 28, 554 (1995)
  9. A. Ciferri, Macromol. Chem. Phys., 195, 457 (1994) https://doi.org/10.1002/macp.1994.021950207
  10. K. Hayakawa, J. P. Santerre, and J. C. Kwals, Mecromolecules. 16, 1642 (1983) https://doi.org/10.1021/ma00244a017
  11. X. Zheng and W. Cao, Eur. Polym. J., 37, 2259 (2001) https://doi.org/10.1016/S0014-3057(01)00111-2
  12. K. Esumi, K. Kuwabara, T. Chiba, F. Kobayashi, H. Mizutani, and K. Torigoe, Colloid Surface A, 197, 141 (2002) https://doi.org/10.1016/S0927-7757(01)00873-1
  13. F. R. Hallett, G. Riess, and M. D. Croucher, Macromolecules, 24, 87 (1991) https://doi.org/10.1021/ma00001a014
  14. Y. Li, P. L. Dubin, H. Dautzenberg, U. Luck, J. Hartmann, and Z. Tuzar, Macromolecules, 28, 6795 (1995) https://doi.org/10.1021/ma00124a014
  15. J. Xia, H. Zhang, D. R. Rigsbee, P. L. Dubin, and T. Shaikh, Macromolecules, 26, 2759 (1993) https://doi.org/10.1021/ma00063a019
  16. B. M. Folmer and B. Kronberg, Langmuir, 16, 5987 (2000) https://doi.org/10.1021/la991655k
  17. M. Wolszczak and J. Miller, J. Photochem. Photobio. A, 147, 45 (2002) https://doi.org/10.1016/S1010-6030(01)00611-6
  18. J. L. Mura, G. Riess, and M. D. Croucher, Macromolecules, 24, 1033 (1991) https://doi.org/10.1021/ma00005a010
  19. K. Kalyanasundaram and J. K. Thomos, J. Am. Chem. Soc., 99, 2039 (1977) https://doi.org/10.1021/ja00449a004
  20. I. Capek, Adv. Colloid Interf. Sci., 97, 91 (2002) https://doi.org/10.1016/S0001-8686(01)00049-5
  21. H. Ringsdorf, J. Venzmer, and F. M. Winnik, Macromolecules, 24, 1678 (1991) https://doi.org/10.1021/ma00007a034
  22. R. Tanaka, J. Meadows, P. A. Williams, and G. O. Phillips, Macromolecules, 25, 1304 (1992) https://doi.org/10.1021/ma00030a016
  23. B. Jonsson, B. Lindman, K. Holmberg, and B. Kronberg, Surfactants and Polymers in Aqueous Solutuon, John Wiley & Sons, U.K., Chap. 2 (1998)
  24. D. Navarro-Rodriguez, Y. Frere, and P. Gramain, Mackromol. Chem., 192, 2975 (1991) https://doi.org/10.1002/macp.1991.021921213
  25. D. NavarroRodriguez, D. Guillon, and A. Skoulios, Mackromol. Chem., 193, 3117 (1992) https://doi.org/10.1002/macp.1992.021931217
  26. Y-C. Kim, I. H. Park, H.-S. Sim, and E-J. Choi, Polymer (Korea), 28, 154 (2004)
  27. Y. Frere and P. Gramain, Macromolecules, 25, 3184 (1992) https://doi.org/10.1021/ma00038a026