DOI QR코드

DOI QR Code

Theoretical Aspects of PTC Thermistors

  • Cho, Sang-Hee (Department of Inorganic Materials Engineering, Kyungpook National University)
  • Published : 2006.11.30

Abstract

The discovery of ferroelectric barium titanate (BaTiO$_3$) in 1942 began the present era of dielectrics-based electronic ceramics. Ferroelectric barium titanate has a high dielectric constant and after the recognition of BaTiO$_3$ as a new ferroelectric compound, various attractive electrical properties have been extensively studied and reported. Since then, pioneering work on valence-compensated semiconduction led to the discovery of the positive temperature coefficient (PTC) of the resistance effect found in doped BaTiO$_3$. Significant progress has since followed with respect to understanding the PTC phenomena, advancing materials capabilities, and developing devices for sensor and switching applications. In this paper, the theoretical aspects of the various PTC models are discussed and the future trends of practical applications for PTC devices are briefly mentioned.

Keywords

References

  1. W. Heywang, 'Barium Titanate as a Semiconductor with Blocking Layer,' Sol. State Electron., 3 51-8 (1961) https://doi.org/10.1016/0038-1101(61)90080-6
  2. W. Heywang, 'Resistivity Anomaly in Doped Barium Titanate,' J. Am. Ceram. Soc., 47 [10] 484-90 (1964) https://doi.org/10.1111/j.1151-2916.1964.tb13795.x
  3. B. Huybrechts, PhD. Thesis, Nagaoka University of Technology, Japan, 1994
  4. B. Huybrechts, K. Ishizaki, and M. Takata, 'Review: The Positive Temperature Coefficient of Resistivity in Barium Titanate,' J. Mat. Sci., 30 2463-74 (1995) https://doi.org/10.1007/BF00362121
  5. G. H. Jonker, 'Halogen Treatment of Barium Titanate Semiconductors,' Mater. Res. Bull., 2 401-07 (1967) https://doi.org/10.1016/0025-5408(67)90079-7
  6. H. Nemoto and J. Oda, 'Direct Examination of PTC Action of Single Grain Boundaries in Semiconducting $BaTiO_3$ Ceramics,' J. Am. Ceram. Soc., 63 [7-8] 393-401 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10636.x
  7. H. Sumino, O. Sakurai, K. Shinozaki, and N. Mizutani, 'Direct Measurement of the PTC Effect of a Single Grain Boundary,' J. Ceram. Soc. of Jpn., 100 [1] 97-100 (1992) https://doi.org/10.2109/jcersj.100.97
  8. J. Daniels, K. H. Hardtl, and R. Wernicke, 'The PTC Effect of Barium Titanate,' Philips Tech. Rev., 38 [3] 73-82 (1978/79)
  9. J. Daniels and R. Wernicke, 'Part V. New Aspects of an Improved PTC Model,' Philips Res. Repts., 31 544-59 (1976)
  10. J. Daniels, 'Part II. Defect Equilibria in Acceptor Doped Barium Titanate,' Philips Res. Rep., 31 505 (1976)
  11. J. Daniels and K. H. Hardtl, 'Part I. Electrical Conductivity at High Temperatures of Donor Doped Barium Titanate Ceramics,' Philips Res. Repts., 31 489 (1976)
  12. R. Wernicke, 'Part IV. The Kinetics of Equilibrium Restoration in Barium Titanate Ceramics,' Philips Res. Rep., 31 526 (1976)
  13. D. Hennings, 'Part III. Thermogravimetric Investigations,' Philips Res. Rep., 31 516 (1976)
  14. G. H. Jonker, 'Some Aspects of Semiconducting Barium Titanate,' Solid State Electron., 7 895-903 (1964) https://doi.org/10.1016/0038-1101(64)90068-1
  15. H. M. Al-Allak, A. W. Brinkman, G. J. Russel, and J. Woods, 'The Effect of Mn on the Positive Temperature Coefficient of Resistance Characteristics of Donor Doped $BaTiO_3$ Ceramics,' J. Appl. Phys., 63 [9] 4530-35 (1988) https://doi.org/10.1063/1.340150
  16. H. Ueoka, 'The Doping Effects of Transition Elements on the PTC Anomaly of Semiconductive Ferroelectric Ceramics,' Ferroelectrics, 7 351-53 (1974) https://doi.org/10.1080/00150197408238043
  17. H. Ueoka and M. Yodogawa, 'Ceramic Manufacturing Technology for the High Performance PTC Thermistor,' IEEE Trans. Manuf. Tech., 3 [2] 77-82 (1974) https://doi.org/10.1109/TMFT.1974.1135679
  18. H. Ihrig, 'PTC Effect in $BaTiO_3$ as a Function of Doping with 3d Elements,' J. Am. Ceram. Soc., 64 [10] 617-20 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10228.x
  19. T. Matuoka, Y. Matuo, H. Sasaki, and S. Hayakawa, 'PTCR Behavior of $BaTiO_3$ with $Nb_2O_5$ and $MnO_2$ Additives,' J. Am. Ceram. Soc., 55 [2] 108 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11223.x
  20. H. J. Hagemann and H. Ihrig, 'Valance Change and Phase Stability of 3d Doped $BaTiO_3$ Annealed in Oxygen and Hydrogen,' Phys. Rev. B, 20 [9] 3871-78 (1979) https://doi.org/10.1103/PhysRevB.20.3871
  21. H. J. Hagemann and D. Hennings, 'Reversible Weight Change of Acceptor Doped $BaTiO_3$,' J. Am. Ceram. Soc., 64 [10] 590-93 (1981) https://doi.org/10.1111/j.1151-2916.1981.tb10223.x
  22. J. H. Lee, S. H. Kim, and S. H. Cho, 'Valency Change of Mn Ions in $BaTiO_3$-Based PTCR Materials,' J. Am. Ceram. Soc., 78 [10] 2845-48 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08065.x
  23. H. Ihrig, 'The Phase Stability of $BaTiO_3$ as a Function of Doped 3d Elements: An Experimental Study,' J. Phy. C: Solid State Phys., 11 [4] 819-27 (1978) https://doi.org/10.1088/0022-3719/11/4/026
  24. Y. M. Chiang and T. Takagi, 'Grain-Boundary Chemistry of Barium Titanate and Strontium Titanate: I, High Temperature Equilibrium Space Charge,' J. Am. Ceram. Soc., 73 [11] 3278-85 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06450.x
  25. M. Nakahara and T. Murakami, 'Electron Status of Mn Ions in $Ba_{0.9}7Sr_{0.03}TiO_3$ Single Crystals,' J. Appl. Phys., 45 [9] 3795-800 (1974) https://doi.org/10.1063/1.1663862
  26. I. Burn, 'Mn-Doped Polycrystalline $BaTiO_3$,' J. Mater. Sci., 14 2453-58 (1979) https://doi.org/10.1007/BF00737036
  27. G. Koschek and E. Kubalek, 'Grain Boundary Characteristics and their Influence on the Electrical Resistance of Barium Titanate Ceramics,' J. Am. Ceram. Soc., 68 [11] 582- 85 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb16159.x
  28. G. Koschek, 'A Contribution to the Microanalysis of Acceptor States at the Grain Boundaries in Barium Titanate Ceramics,' Deutschen Keramischen Gesellschaft, 66 [3/4] 128 (1989)

Cited by

  1. ceramics—modified Boltzmann-Poisson model vol.531, pp.1, 2018, https://doi.org/10.1080/00150193.2018.1456116
  2. Electrical Properties and Microstructure of BaTiO3 upon the addition of 0.1 - 0.15 mole% Sb2O3 and 0.25 wt% Si3N4 vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.945