Serial Degradation of Perchloroethylene by Delftia sp. N6 after Dechlorination Using Fenton's Reagent

  • Lee, Wan-Seok (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Chi-Yong (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2006.11.30

Abstract

The degradation of perchloroethylene (PCE) was investigated with the serial treatment of biological reaction after dechlorination using Fenton's reagent. The dechlorination of PCE was expressed using $D_m$ (dechlorination value), calculated from ${\Delta}Cl^-mol/{\Delta}PCE$ mol, and was 2.58 with 5 mM of $H_2O_2$ and $Fe^{3+}$. The $150{\mu}M$ of PCE was transformed to $37{\mu}M$ of dichloroacetic acid (DCAA). Biological treatment with Delftia sp. N6 was applied after degradation of PCE by the Fenton reaction. The optical densities indicating cell growth were 0.53/0.10 with/without the Fenton reaction after one day, respectively. The N6 strain degraded 95% of the DCAA produced from PCE by the Fenton reaction within one day. Consequently, it seemed that the serial treatment of a Fenton reaction and biological reaction was effective in the removal of not only PCE, but also DCAA, one of the major metabolites of PCE.

Keywords

References

  1. Acha, V., M. Meurens, H. Naveau, and S. N. Agathos. 2000. ATR-FTIR sensor development for continuous on-line monitoring of chlorinated aliphatic hydrocarbons in a fixed-bed bioreactor. Biotechnol. Bioeng. 68: 473-487 https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<473::AID-BIT1>3.0.CO;2-8
  2. Buyuksonmez, F., T. F. Hess, R. L. Crawford, A. Paszczynski, and R. J. Watts. 1999. Optimization of simultaneous chemical and biological mineralization of perchloroethylene. Appl. Environ. Microbiol. 65: 2784-2788
  3. Chang, Y. C., M. Hatsu, K. Jung, Y. S. Yoo, and K. Takamizawa. 2000. Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89: 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
  4. Fukushima, M. and K. Tatsumi. 2001. Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron (III), humic acid, and hydrogen peroxide. Environ. Sci. Technol. 35: 1771-1778 https://doi.org/10.1021/es001088j
  5. Garant, H. and L. Lynd. 1998. Application of competitive and noncompetitive kinetics to the reduction dechlorination of chlorinated ethenes. Biotechnol. Bioeng. 57: 751-755 https://doi.org/10.1002/(SICI)1097-0290(19980320)57:6<751::AID-BIT13>3.0.CO;2-A
  6. Heredia, J. B., J. Torregrosa, J. R. Dominguez, and J. A. Peres. 2001. Kinetic model for phenolic compounds oxidation by Fenton's reagent. Chemosphere 45: 85-90 https://doi.org/10.1016/S0045-6535(01)00056-X
  7. Howsawkeng, J., R. J. Watts, D. L. Washington, A. L. Teel, T. F. Hess, and R. L. Crawford. 2001. Evidence for simultaneous abiotic-biotic oxidation in a microbial-Fenton's system. Environ. Sci. Technol. 35: 2961-2966 https://doi.org/10.1021/es001802x
  8. Kang, N., D. S. Lee, and J. Yoon. 2002. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47: 915-924 https://doi.org/10.1016/S0045-6535(02)00067-X
  9. Kim, J.-D., S.-H. Shim, and C.-G. Lee. 2005. Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea. J. Microbiol. Biotechnol. 15: 337-345
  10. Larking, D. M., R. J. Crawford, G. B. Y. Christie, and G. T. Lonergan. 1999. Enhanced degradation of polyvinyl alcohol by Pycnoporus cinnabarinus after pretreatment with Fenton's reagent. Appl. Environ. Microbiol. 65: 1798-1800
  11. Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park. 2005. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM07. J. Microbiol. Biotechnol. 15: 859-865
  12. Lee, W.-S., C.-S. Park, J.-E. Kim, B.-D. Yoon, and H.-M. Oh. 2002. Characterization of TCE-degrading bacteria and their application to wastewater treatment. J. Microbiol. Biotechnol. 12: 569-575
  13. Leung, S. W., R. J. Watts, and G. C. Miller. 1992. Degradation of perchloroethylene by Fenton's reagent: Speciation and pathway. J. Environ. Qual. 21: 377-381 https://doi.org/10.2134/jeq1992.00472425002100030012x
  14. Lin, S. H. and C. C. Lo. 1997. Fenton process or treatment of desizing wastewater. Water Res. 31: 2050-2056 https://doi.org/10.1016/S0043-1354(97)00024-9
  15. Lontoh, S., J. A. Zahn, A. A. DiSpirito, and J. D. Semrau. 2000. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol. Lett. 186: 109-113 https://doi.org/10.1111/j.1574-6968.2000.tb09090.x
  16. McKinzi, A. M. and T. J. DiChristina. 1999. Microbially driven Fenton reaction for transformation of pentachlorophenol. Environ. Sci. Technol. 33: 1886-1891 https://doi.org/10.1021/es980810z
  17. Oh, H.-M., Y.-H. Ku, K.-H. Ahn, G.-S. Kwon, Y.-H. Kho, T.-I. Mheen, and B.-D. Yoon. 1996. Phenolic wastewater treatment by a mixed culture GE2 immobilized on activated carbon. J. Microbiol. Biotechnol. 6: 116-119
  18. Pignatello, J. J., D. Liu, and P. Huston. 1999. Evidence of additional oxidant in photoassisted Fenton reaction. Environ. Sci.Technol. 33: 1832-1839 https://doi.org/10.1021/es980969b
  19. Ryoo, D. H., H. Shim, K. Canada, P. Barbieri, and T. K. Wood. 2000. Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat. Biotechnol. 18: 775-778 https://doi.org/10.1038/77344
  20. Ryoo, D. H., H. Shim, F. L. G. Arenghi, P. Barbieri, and T. K. Wood. 2001. Tetrachloroethylene, trichloroethylene, and chlorinated phenols induce toluene-o-xylene monooxygenase activity in Pseudomonas stutzeri OX1. Appl. Microbiol. Biotechnol. 56: 545-549 https://doi.org/10.1007/s002530100675
  21. Sharma, P. K. and P. L. McCarty. 1996. Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl. Environ. Microbiol. 62: 761-765
  22. Walling, C. and S. J. Kato. 1971. The oxidation of alcohol by Fenton's reagent: The effect of copper ion. Am. Chem. Soc. 93: 4275-4281 https://doi.org/10.1021/ja00746a031
  23. Wang, Q. and A. T. Lemley. 2001. Kinetic model and optimization of 2,4-D degradation by anodic Fenton treatment. Environ. Sci. Technol. 35: 4509-4514 https://doi.org/10.1021/es0109693