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ABSTRACT

We use the hierarchical Bayesian approach to describe the transition probabilities of a binary non—
homogeneous Markov chain. The Markov chain is used for describing the transition behavior of
emotionally disturbed children in a treatment program. The effects of covariates on transition prob—
abilities are assessed using a logit link function. To describe the time evolution of transition prob—
abilities, we consider two modeling strategies. The first strategy is based on the concept of ex—
changeability, whereas the second one is based on a first order Markov property. The deviance in—
formation criterion (DIC) measure is used to compare models with two different time dependent
structures. The inferences are made using the Markov chain Monte Carlo technique. The developed
methodology is applied to some real data.
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1. INTRODUCTION

Binary scale data can arise in many areas, including economics, engineering, so-
cial, political, and biomedical sciences. When such data are collected, over a span
of years at discrete time points, a Markov chain model is used to describe the
transitional behavior of the data. Most of the literature on statistical inference,
concerning the transition probabilities of a Markov chain, is limited to the tradi-
tional methods, based on the likelihood ratio tests presented in Anderson and
Goodman [1], Billingsley [2] and Chatfield [4]. However, the traditional ap-
proaches are based on the large sample approximations to sampling distributions.

Bayesian approaches for analyzing Markov chains were considered by Lee et
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al. [9], wherein the authors presented conjugate Bayesian methodology to esti-
mate transition probabilities of a homogeneous chain. Meshkani [10] proposed
empirical Bayes estimates of transition probabilities for both homogeneous and
nonhomogeneous Markov chains. Recently, Erkanli et al. [6] considered a binary
Markov chain using a Markov logistic regression setup. However, none of these
previous approaches considered a formal treatment of nonhomogeneous Markov
chains. In other words, the time non-homogeneity was described by time depend-
ent covariates, but the model parameters were time-invariant static. In the pre-
sent study, formal treatments of time non-homogeneous Markov chains are con-
sidered with time varying parameters.

Let {sy,s;,...; be a sequence of random variables, indexed by time, taking bi-

nary values in &£={0,1} . The sequence of states {s;,s,,..; form a binary

Markov chain as

PGS, =Jjlsy=1,..,8 =k)= p(st Is,_1).
The probabilistic evolution of the Markov chain is governed by the transition
probabilities

p(st =j|st_1 =i)=7fijt ,

1
where i,jes, 0<r;, <1, t=1,.,T, and ) 7; =1. The matrix of transition

iyt = it

Jj=0
probabilities is
7 T
H(t) - l: 00¢ Oll} , (1)
Toe M
where 7z, =1-7,, foralli=0,1andt=1,..., T.

The Markov chain model that allows for incorporation of covariate effects is
the so called Markov regression model setup, which was originally suggested by
Cox [5] as the observation driven logistic autoregression model. For the above bi-
nary Markov chain in (1), Muenz and Rubinstein [11] related the covariates to the
transition probabilities as

ciz oy exp(a'z,,)
o0& 2n) = T @5
o (B3 ) = exp(f'z,,)

1+exp(ﬂ~'£m) ’
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where the vector z,, contains p covariates for the mth person in the study of the
psychological impact of breast cancer, and & =(ay,...,,) and ﬁ =(Bys oo ﬂp)

are the two parameter vectors associated with two rows of the II(¢). The parame-

ters were estimated using maximum likelihood estimates.

Erkanli et al. [6] presented Bayesian methods, where the initial values of the
Markov chain, treated as unknown quantities, were described by a probability
distribution and obtained unconditional inferences for the Markov logistic regres-
sion models as

logit(z,,,) = ,3 "Zmt + Vg1 - 2)

However, the treatment of nonhomogeneous Markov chains in (2) is via the
use of time variant covariates, but not by time varying parameters. In the Bayes-
ian literature, the term Markov regression model may be used to refer to two
classes of Markov models, which can be classified as parameter driven and obser-
vation driven Markov models, using the terminology of Cox [5]. Markov chain
models are observation driven models, whereas the models, such as Cargnoni et al.
[3], where the parameters evolve over time according to a first-order Markov
property, are parameter driven models. In the present study, we consider models
that combine both parameter driven and observation driven models for time non-
homogeneous binary Markov chains. We use a full Bayesian approach and pro-
pose two dependence structures for describing the time dependence of transition
probabilities of the nonhomogeneous chains, which are exchangeability and first-
order Markov dependence. The goodness of model fit between two dependence
structures will be compared, using Deviance Information Criterion (DIC) measure
[13], in the context of application in the data of mental health. The proposed mod-
els are implemented using a real data collected in a psychiatric treatment pro-
gram in Virginia, USA [12].

2. MODELS

2.1 Exchangeable Model

Let y,;; as a binary variable representing the transition of the mth individual

from state i at time (¢-1) to state j at time ¢, that is,

Yomijt = WSt = J | Sppyg =10)



22 SUNG

where 1(A) takes value 1 if event A occurs and O otherwise. Then, Imije 18 @

Bernoulli random variable with probability 7,,;, denoted as
(Ymije | Zmije) ~ Bernoulli(z,,;,) 3)
Now we define a logit transform on 7z, as
logit(7,;0,) = 7; + 2 Bt 4

form=1, .., M,i=0,1,and t = 1, ..., T. Exchangeability of time dependent re-
gression parameters {y,} and {f,}, over time, can be achieved by assuming

that {y,} and {f,} are conditionally independent, over time, given the hyper-
parameters {u,} and {u,} respectively and by specifying priors for {z,} and

{ug}. For {5,}, the exchangeability is achieved by assuming the conditional in-

dependence given x4, and 7, where

}/tI,U},,T},NN(/Jy,T}/), (5)

and assuming 7, ~ Gamma(a, b) with a and b specified. In (5) r,, there is so
called ‘precision,” which is the inverse of the variance. Further, u, is assumed to

have a normal prior. Similarly, for {f,}, we assume that f,’s are conditionally

independent, given kg and 7, as

B\ gyt ~ Nug, 7p), ®)

where u, is assumed to have a normal prior and 75 ~ Gamma(a,b) with a and

b specified.

Figure 1 is the graphical representation of the hierarchical Bayesian model
with the exchangeable time-dependent parameters. This illustrates the model
structure, and how parameters at a given time point are related to those at other
time points. In this figure, a plate represents repeated components for the range,
for example (i in 1 : M). The arrow shows the specific relationships between two
nodes. The descriptions of nodes and arrows are as follows [14]: A constant node
describes a quantity fixed by the study design; stochastic node (D describes
a variable that is given a distribution; a deterministic node describes all logical
functions of other nodes; an arrow “—” represents the relationship between par-

ent node and descendants; an arrow “= ” connects two nodes by logical functions.
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Figure 1. Graphical representation of the exchangeable parameter model

The conditional independence assumptions, as illustrated in Figure 1, are

Imiit L Bas Vo> 5> Tps s T T
”mijt "L(‘uﬁ;’z-ﬂ’ ,uy, Ty) ‘ ﬁit’ Vi-

The plates in the figure represent the repetitive structure with respect to the cor-
responding index. Each node is assumed to be conditionally independent with re-
spect toindices m=1, ..., M,i=0,1,j=0,1,and t=1, .., T.

To summarize, the hierarchical setup for the exchangeable model can be rep-
resented as

First Level:
Imije | i) ~ Bernoulli(z, ;) ,
Second Level;
log it(7,500) = 71 + 22 Bit »
el ay.r)) LBy Vg o7p)s
Third Level:
M, L, Lug Lg.
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2.2 Markov Model

We also consider a stronger form of dependence than exchangeability: a first or-
der Markov property assessed on the model parameters in (4), following the
Markov structure used by Grunwald et al. [8] and Cargnoni et al. [3]. For y, and

B, » we assume a random walk type of Markov structure as

Ve =V Wy, (7a)
By = By twg (Th)

where w, and wg follow independent normal distributions N(O,r,) and

N(O, z4), respectively for all £. From the above, it follows that

Ny, 4,7,)if t>0
},’l}/"l’r7~{N(Or;ift—O ’ (8a)
b }/ -
N(B,4,75)if t>0
ﬂi |ﬂ— Tg ™~ . ’ 8b)
PR NQO,z,) i =0 (

where 7, ~Gamma(a,b) and 7, ~Gamma(a,b), independently with @ and b

specified.

TB ‘E

for(i IN

=

for(t IN 1 : Time)

Figure 2. Graphical representation of the Markov parameter model
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Figure 2 is the graphical representation of the hierarchical Bayesian model with
the first order Markov structure on time-varying parameters.
The conditional independence assumptions, as illustrated in Figure 2, are

Imije L B> Big1s 1> Vi1 T 77) | Z i »
it L Big15 V115 75, T ) By 7

The plates in the figure represent the repetitive structure with respect to the cor-
responding index. Each node is assumed to be conditionally independent with re-
spect toindices m=1, ..., M,1=0,1,j=0,1,and ¢t =1, ..., T.

To summarize, the hierarchical setup for the exchangeable model can be rep-
resented as

First Level:

Imije | ) ~ Bernoulli(z,, ;)
Second Level;
log it(7,,;0,) = ¥ + Zmi Bis »
(71 71207,) LBy | Bua7p)
Third Level:
(r,1a,b) L(z51a,b).

3. POSTERIOR ANALYSIS

In section 1, two classes of models were presented, employing two dependence
structures for model parameters.‘ Bayesian analyses of these models require the
evaluation of posterior distribution of unknown parameters. One of the most
popular inference procedures in Bayesian analysis is to take the Monte Carlo
based simulation technique called Markov chain Monte Carlo (MCMC) methods,
which replace the analytic integrations with Monte Carlo integration. Especially,
the Gibbs sampler (see Gelfand and Smith [7]), a special MCMC method, is
widely used to generate samples from the posterior distributions of interest. Once

the Gibbs sampler is implemented and a posterior sample of size G, {ﬂ,lniﬂ, -

ﬂgijt} is obtained from the posterior distribution Py lSl,...,SM), where

S, =(Sp0, o Spr) » & variety of quantities of interest can be obtained using the
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Monte Carlo estimates. For example, the marginal posteriors can be obtained us-
ing the full conditionals as

~ ~ 18 o~ ~
p(”mijt ISy, ... Sy) = Iel Z p(ﬂmijt | ﬂ,i(ijt), Si S
g=1

Also, the posterior mean of 7,,;, can be computed as

- . 1 &
E[”myt | Sl’ very SM] ~ 5‘ Zlﬂ.fll;ﬂ .
g=

In the following sections, the implementation of the Gibbs sampler is discussed
under two different dependence structures of the model parameters.

3.1 Posterior Analysis for Exchangeable Model

The Bayesian analysis requires the full joint posterior distribution, which can be

written as
p(Hl(l), cery HM(T),}’I, veey }/T, IBOI’ veey ﬂlT’ 'uﬁo 5 /Jﬁl N ,u},, Tﬂ’ T}/ | é 5 evey L§M)
M1T
o« [TTTTT2Gomis 17 B0 | 1,7, 0(0, ) D(z,)

m=1i=0 =1

X p(ﬂit | Hp» Tﬁ)p(,uﬂi )p(Tﬂ) ) 9

where I, (£) = (Zp0;5 ZTmyy) 5 Sm =(Sm0s > Smr) s Imit = miot» Ymite) > Tmit = (Fmior>
) form=1,..,MI=01t=1,.. T

In what follows, the full conditional posterior distribution of any random
quantity ¢ will be denoted by p(¢ | é, ¢(')), where S = (S'l, cees SM). For the full

conditional distribution of y,, it follows from (9) that

- M 1
P 1S, 7y o [1T1PGmir 170 B)Pi N1ty T,)

m=1i=0

1 io ( XDV, + Zpuliy) )]( 1 ]

m=1} 1+exp(y, + 2y, B 1+exp(y, + 2, B:)

x exp{—%—(;@ - ,uy)Q} . (10)
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The above is not a standard form of known distributions and the Gibbs sampler is
used to simulate posterior samples.
The full conditional distribution of S, can be written as

. M
By 18, BT) o< T1 PGonis 1 72> Bi)PBy | 115, 75)

m=1

| [=CEENIAR o N

| \Z+exp(y, +2,,.5:) 1+exp(¥, + 2, 5:)

xeXp{_%(ﬂit ~ g )2}, 1)

In (11), the product with respect to the row index i is suppressed, as S, 1s inde-
pendent for iz k.

The full conditional distribution of z;, can be written as
P | S, 1) = p(By | 1y 7))

- exp{—é{rﬁw,-t ~pp P+, (g —ﬂﬂf}}

ocexp{—%(,uﬂi —B)ﬂ, (12)

where C=7,+7, and B= C_lz'# #, - Thus, the full conditional distribution of
(3 12 3
#y follows the normal distribution with mean B and precision C.
The full conditional distribution of 4, follows the normal distribution, simi-

lar to (12). The full conditional distribution of = 5 can be written as

Pz | 8,757) o p(By | g ,7)D(z5)

T
oc 72 exp{—?ﬂ(ﬂit — 1y 373 exp(-7, /b)
oc r;*_l exp(-7,4 /6%, (13)
(,Bit —Hg )2

which is a Gamma with a*=a+1/2, b* =( + %)_1 . The full conditional

distribution of 7, has similar Gamma distribution to (13).
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3.2 Posterior Analysis for Markov Model

The Bayesian analysis requires the full joint posterior distribution, which can be
written as

PAL, ), ooty Ty (T), 715 eoes 775 Boss oo Brrs 750 7, 1 81, ey )
M 1T .
o HHHp(ymit L7, B P, 1 7,0 Ty)p(f},)
m=11i=0 t=1

xP(By | By fp)p(fp) ) (14)

where Hm(t) = (ﬁmOt’imlt) s Sm = (smO’ M3/ smT) ’ &mit = (ymiOt’ ymilt) ’ i'mit = (”miOt’
i) form=1,..,M,i=0,1,t=1, .., T

For the full conditional distribution of y,, it follows from (14) that

. M 1
PG 1850 & TTTLPGomie | 70 )P | 11,7, PGy 1 707,
m=1i=0

=i ﬁ( exp(, + 230 H 1 ]

m=1i=0 1+ eXp(yt + thﬂit) 1+ exP(}/t + thﬂit)

x exp{—%{(n ~70)" + G =1 }} : (18)

The above is not a standard form of known distributions, and the Gibbs sampler
is used to simulate posterior samples.

The full conditional distribution of g, can be written as

- M
PB 1S, BY) o< T] PG 170 B) 0By | By 1,2 )P Byt | Byi7p)

m=1

r X,i00 X onitt
mﬁ[ exp(y, + 2, 5) ] ( 1 j

1+exp(y, + 2, 5;) 1+exp(y, + 2, 5:)

<exp| ~L{(B, ~ B’ +<ﬂit+l—ﬂu>2}} (16)

In (16), the product with respect to the row index i is suppressed as g, is inde-
pendent for i = k.
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The full conditional distributions of T4 and 7, are similar to the Gamma

form given in (13), but with a modified scale parameter involving quadratic form

(B — Pua )2 and (3, - 7t—1)2 , respectively.

4. APPLICATION TO THE REAL DATA

In this section, the proposed two classes of models are implemented with the real
life data reported in Nhan [12]. The longitudinal data presented in Nhan [12] is
from a psychiatric treatment study of children and young adolescents in Virginia,
USA. The present study uses M=240 subjects for 7=4 time periods going through
a treatment program to assess the change of patients’ functional status over time.
The subjects who participated in the study cover ages from 8 to 17 at the time
they entered the program. The status of patient functioning is represented by 0
(lower state) and 1 (higher state) and was evaluated every three months after the
patients entered the program.

4.1 Prior Specifica*ions

Non-informative, but proper, priors were used to describe the uncertainty about
the parameters of proposed models. In the exchangeable model, (y, | HysT)) ~

N(u,,7,) and (B lug,tg) ~N(ug,t4), p, and p, are assumed to follow
N(0,0.01) independently for i’s; 7, and Ty are assumed to follow Gamma dis-

tribution with parameters (0.01, 0.01).
In the Markov model, (3 |7,4,7,) ~ N(#,1,7,) and (B, | By1,75) ~ N(By 1,

Tﬂ) for ¢t > 0. In this case, T, and 7, are assumed to follow the Gamma distri-

bution with paramesers (0.01, 0.01).

4.2 Results

The inferences about the transition probabilities, as well as the parameters of the
proposed models in section 2, are based on the posterior distributions of parame-
ters of interest, and the posteriors were obtained from the Gibbs sampling tech-
nique. The models were implemented in the WinBUGS programming environ-
ment [14]. After an initial burn-in sample of 100,000 iterations, 2,000 simulated
samples of all parameters were saved for parameter inferences. It took about 950
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seconds for 100,000 iterations in a Pentium IV 3 GHz Windows XP PC, and the
results did not exhibit any serious convergence problems.
The effects of age on the transitional behaviors are captured in f,’s and the

posterior densities of f,’s are compared between the Exchangeable and Markov
models in Figure 3. S,’s for the Exchangeable model are represented by a line
and the Markov model by a dotted line. f,’s for the Exchangeable model are

slightly bigger than those of the Markov models, but this difference is compen-
sated by the fixed effect parameter y,’s, which are smaller for the Exchangeable
model than for the Markov model, as shown in Figure 4. Both the fixed effect pa-
rameters ,’s and the age effect parameters g, did not vary much by time, and

they increased slightly with time, representing increased age effects over time.
Thus, the patients’ likelihood of moving to state 1 increased with time. Also, pos-
terior distribution of S, ’s showed mostly positive values; this represents that the

likelihood of moving to state 1 also increased with age. Thus, the treatment pro-
gram is more effective for older age groups.

Betal0,1] Beta[0,2] Beta[0,3] Beta[0,4]

— Exchangeable
— - Markov

10

10

10
10

-0.100 0.1 02 03 04 05 -0.10.0 0.1 02 03 04 05 -0.100 0.1 02 03 04 05 -0.1 0.0 0.1 0.2 03 0.4 05

Beta[1,1] Beta[1,2] Beta[1,3] Beta[1,4]

-0.100 0.1 02 03 04 05 -0.100 0.1 02 0.3 04 05 -0.10.0 0.1 0.2 0.3 04 05 -0.100 0.1 02 03 04 05

Figure 3. Posterior distributions of g, for /=0, 1, £ = 1,...,4 for the Exchangeable and
Markov models
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Gammal[1] Gamma([2] Gammal[3] Gammal[4]
[~} =) o o
- — Exchangeable A - -
— - Markov
«© © 0 @
o (=] o o

Figure 4. Posterior distributions of y, for f=1,...,4 for the Exchangeable and
Markov models

While the transition to move from state 0 to state 1 increased both with time
and age, the likelihood of remaining in the same state when they were in state 1
was higher than the likelihood of moving from state 0 to state 1.

The goodness of fit was evaluated using the deviance information criterion
(DIC), developed by Spiegelhalter et al. {13]. Table 1 shows that the DIC is in fa-
vor of the Exchangeable model, as implied by the lower DIC value. In the table,
D-bar is the posterior mean of parameters, D-hat is a point estimate of the devi-
ance, evaluated using the posterior means of parameters, and Ppis the effective
number of parameters. Then, DIC=D-bar + Pp. The actual number of parameters
for 7, and £, is 12, but the effective number of parameters, Pp, is slightly

fewer (9.39 and 10.02) than 12. This means that not all of the 12 parameters con-
tributed to explaining the transitional behavior.

Table 1. Comparison of model! fit using DIC

Model D-bar D-hat Pp DIC
Exchangeable 1077.71 1068.32 9.39 1087.10
Markov 1079.84 1069.82 10.02 1089.87
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Even though the DIC favored the Exchangeable model, the difference in DIC
was not considerable, and the posterior distributions of transition probabili-
ties 7, ’s are almost identical between two models for given i, j and ¢. Thus, for

the illustration purpose, the results from the exchangeable models are presented
to make inferences about the transitions. Figure 5 presents the posterior distribu-
tions of 7y,’s for ¢ = 1,...,4 by age. While the effect of age on the transition prob-

abilities was minimal for the younger group, the effect of age became more obvi-
ous for the older group and increased with time. Thus, older patients have a
higher probability of moving to state 1 from state 0 when they stay longer at the
hospital.
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POt for age 8 P01t for age 10 POt for age 12 PO1t for age 14 PO1t for age 16
. . C . , _
Figure 5. Posterior distributions of 7z, ’s for =1, ..., 4 by age

Transitional behavior from state 1 to state 0 by age and time is presented in
Figure 6. This is the transition moving from a good state to a worse state, and
Figure 6 shows that the likelihood of moving from state 1 to state O decreased
with time and age. Thus, older patients are less likely to be deteriorated than
younger ones, and the likelihood of deterioration decreased with time.
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Figure 6. Posterior distributions of 7y, ’s for =1, ..., 4 by age

5. CONCLUSIONS

In the present study, the parametric modeling strategies to make inferences
about transition probabilities of a binary non-homogeneous Markov chain were
developed. In so doing, the formal treatment of time non-homogeneity was as-
sessed using two different dependence structures on the time-variant parameters
of the logistic model. The exchangeable model described a mild dependence of pa-
rameters, while the Markov model described a stronger first order dependence of
parameters across time. The proposed modeling strategies were implemented in
the WinBUGS programming environment using a real data set collected from a
psychiatric treatment program in Virginia, USA.

Posterior distributions of parameters of interest were obtained by the Gibbs
sampling technique. DIC measure revealed a slightly better model fit for the ex-
changeable model. The exchangeability represented in (6) involves a judgment of
complete symmetry among f,..., S;7, and this means that {8,,..., By} are a
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random sample from a normal distribution with the unknown mean u; and the
unknown precision, the inverse of the variance, T4 Thus, we can infer form the

DIC measure that the age effects, at different time points, on the transition be-
havior are similar. In other words, the DIC indicates that f,’s are independent

of the time order in which they are collected, rather than having first order de-
pendence in terms of the time. Age effects on transition probabilities were as-
sessed by posterior distributions of transition probabilities. Transitions to a good
state from a bad state increased with time and age, whereas transitions to a bad
state decreased with time and age.

In the present study, we used a hierarchical Bayesian approach, as the non-
Bayesian framework does not allow for modeling of the dynamically evolving
structure of the parameters. Although the model was implemented using a data
set from a medical treatment program, the application is not limited to the medi-
cal area, but can be extended to a variety of fields. For example, in marketing re-
search, changes in preferences for a particular product, represented in a binary
scale, can be formulated using a Markov chain.
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