Thermal Degradation Kinetics of Antimicrobial Agent, Poly(hexamethylene guanidine) Phosphate

  • Lee, Sang-Mook (Department of Applied Chemistry, Dongduk Women s University) ;
  • Jin, Byung-Suk (Department of Applied Chemistry, Dongduk Women s University) ;
  • Lee, Jae-Wook (Applied Rheology Center, Department of Chemical Engineering, Sogang University)
  • Published : 2006.10.31

Abstract

The thermal degradation of poly(hexamethylene guanidine) phosphate (PHMG) was studied by dynamic thermogravimetric analysis (TGA) and pyrolysis-GC/MS (p-GC). Thermal degradation of PHMG occurs in three different processes, such as dephosphorylation, sublimation/vaporization of amine compounds and decomposition/ recombination of hydrocarbon residues. The kinetic parameters of each stage were calculated from the Kissinger, Friedman and Flynn-Wall-Ozawa methods. The Chang method was also used for comparison study. To investigate the degradation mechanisms of the three different stages, the Coats-Redfern and the Phadnis-Deshpande methods were employed. The probable degradation mechanism for the first stage was a nucleation and growth mechanism, $A_n$ type. However, a power law and a diffusion mechanism, $D_n$ type, were operated for the second degradation stage, whereas a nucleation and growth mechanism, $A_n$ type, were operated again for the third degradation stage of PHMG. The theoretical weight loss against temperature curves, calculated by the estimated kinetic parameters, well fit the experimental data, thereby confirming the validity of the analysis method used in this work. The life-time predicted from the kinetic equation is a valuable guide for the thermal processing of PHMG.

Keywords

References

  1. M. A. Chapurina, L. V. Redna, T. N. Yudanova, K. P. Khomyakov, T. A. Cherdyntseva, and A. I. Netrusov, Fibre Chem., 36, 30 (2004) https://doi.org/10.1023/B:FICH.0000025535.20049.b7
  2. T. N. Yudanova, I. F. Skokova, O. N. Bochkareva, and L. S. Gal'braikh, Fibre Chem., 33, 282 (2001) https://doi.org/10.1023/A:1019277513867
  3. E. Yu. Aleshina, T. N. Yudanova, and I. F. Skokova, Fibre Chem., 33, 421 (2001) https://doi.org/10.1023/A:1019277513867
  4. M. S. Khil, H. Y. Kim, Y. S. Kang, H. J. Bang, and D. R. Lee, Macromol. Res., 13, 62 (2005) https://doi.org/10.1007/BF03219016
  5. W. S. Shim, J. S. Lee, and D. S. Lee, Macromol. Res., 13, 344 (2005) https://doi.org/10.1007/BF03218464
  6. L. M. Antonik, V. A. Lopyrev, N. A. Korchevin, and V. P. Tomin, Russ. J. Appl. Chem., 75, 257 (2002) https://doi.org/10.1023/A:1016164520388
  7. B. Saha and A. K. Ghoshal, Chem. Eng. J., 111, 39 (2005) https://doi.org/10.1016/j.cej.2005.04.018
  8. X. Li, M. Huang, and Y. Yang, Polym. Int., 48, 1277 (1999) https://doi.org/10.1002/(SICI)1097-0126(199912)48:12<1277::AID-PI302>3.0.CO;2-Q
  9. Z. Gao, I. Amasaki, and M. Nakada, J. Anal. Appl. Pyrol., 67, 1 (2003) https://doi.org/10.1016/S0165-2370(02)00010-4
  10. H. E. Kissinger, Anal. Chem., 29, 1702 (1957) https://doi.org/10.1021/ac60131a045
  11. J. P. Lin, C. Y. Chang, C. H. Wu, and S. M. Shih, Polym. Degrad. Stabil., 53, 295 (1996) https://doi.org/10.1016/0141-3910(96)00098-5
  12. W. L. Chang, J. Appl. Polym. Sci., 53, 1759 (1994) https://doi.org/10.1002/app.1994.070531306
  13. T. J. Ozawa, Therm. Anal., 2, 301 (1970) https://doi.org/10.1007/BF01911411
  14. J. T. Sun, Y. D. Huang, G. F. Gong, and H. L. Cao, Polym. Degrad. Stabil., 91, 339 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.04.037
  15. S. Volker and Th. Rieckmann, J. Anal. Appl. Pyrol., 62, 165 (2002) https://doi.org/10.1016/S0165-2370(01)00113-9
  16. J. Lede, Ind. Eng. Chem. Res., 39, 893 (2002) https://doi.org/10.1021/ie990623p
  17. H. L. Friedman, J. Polym. Sci. C, 6, 183 (1964)