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A NEW BIHARMONIC KERNEL
FOR THE UPPER HALF PLANE

ALI ABKAR

ABSTRACT. We introduce a new biharmonic kernel for the upper
half plane, and then study the properties of its relevant potentials,
such as the convergence in the mean and the boundary behavior.
Among other things, we shall see that Fatou’s theorem is valid for
these potentials, so that the biharmonic Poisson kernel resembles
the usual Poisson kernel for the upper half plane.

1. Notation

Let D denote the unit disk and T = 0D denote its boundary in the
complex plane C. The upper half plane will be denoted by

Ci={z+iyeC: y>0}
Let A stand for the Laplace operator
1 /0% 62 ,
AZAFZ(WJF(?_?P)’ e

in the complex plane. The biharmonic Green function I'(z,() for the
operator A? in the unit disk is the function
-
1-Cz
This function solves, for fixed ¢ € I, the boundary value problem
AT (2,¢) = 6:(2), z€D,
I'(z,{) = 0, z €T,
8n(z)1“(z,§) = 0, z €T,

2
I(z,¢) = |z—|*log (1= - ¢*, (2 eDxD.
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where 3,(,) stands for the inward normal derivative with respect to the
variable z € T, and §; denotes the Dirac distribution concentrated at
the point { € . For details see [2].

2. Introduction

A real-valued function u defined on an open subset of the complex
plane is said to be bikarmonic if A?u = 0. We first introduce a bihar-
monic kernel function for C;. Then we shall make use of this kernel
function to produce a class of biharmonic functions in the upper half
plane. The main objective here is to study this family of biharmonic
functions in more detail. Among other things, we shall see that Fatou’s
theorem concerning the almost everywhere existence of nontangential
limits is valid, so that the biharmonic (Poisson) kernel resembles the
usual one.

We now proceed to give an overview of the origin of the biharmonic
Poisson kernel for the unit disk. This suggests a direct method of calcu-
lating the desired kernel function for the upper half plane.

Let u be a C'*°-smooth function in a neighborhood of the closed unit
disk. Using Green’s formula twice we obtain

u(z) = /D T(z,¢)A%(C) dA(C)
1) - / By (AT (2, 0)) u(C) do(€)
+5 | AT Otuu0) dolc),

where dA(() denotes the normalized area measure on the unit disk, and
do(¢) stands for the normalized arc-lengh measure on the unit circle. A
computation shows that

Al (2,) =G(2,0) + H(z,(), (%) eDxD,

where G(z, () is the Green function for the Laplace operator in the unit

disk;

z—C 2

G(z,¢)=1o =
(2,¢) =log | — z

and the second term is given by

H(z,{)=(1- II)| |§Z:2, (2,¢) e D x D.

(2,() e Dx D,
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Moreover, another computation shows that

(2)  Fle,0) = ~50u0AT(2,0)

L), (- |22
“2{ FoCR T e—cp

For a possibly non-smooth function u satisfying some growth conditions,
the author and Hedenmalm [1] succeeded to find a Riesz-type repre-
sentation formula in terms of the functions H(z,{) and F(z,(). More
precisely, the formula (1) generalizes to

}, (2,() e DxT.

(3) w(z) = /D D(z,¢) dyu(C) + /T H(z,¢) dA(()
+/F(z,()dy((), 2z €D,
T

where u is a positive Borel measure on the unit disk, and v and X are
two real-valued Borel measures on the unit circle.

For fixed ¢ € T, the function F(z,() defined by (2) is biharmonic; in
the sense that it satisfies the equation

AZF(2,0)=0, z€D.

The function F(z, () is known as the biharmonic Poisson kernel for the
unit disk. In tkis article we intend to find the upper half plane analog
of F(z,(), and then manage to prove the upper half plane version of
Fatou’s theorem. This generalizes the classical Fatou’s theorem valid for
the (harmonic) functions defined by the usual Poisson kernel (see for
instance [3]) to biharmonic functions defined by the biharmonic Poisson
kernel.

3. The biharmonic Poisson kernel for the upper half plane

Given the usual Poisson kernel for the unit disk, it is easy to find the
Poisson kernel for the upper half plane (or any other simply connected
region). What we need is a Moebius transformation which maps the
given region onto the unit disk, then a change of variables does the
job. Unfortunately, the biharmonic functions are not preserved under
Moebius transformations; therefore this method does not work. Instead,
we have to appeal to a direct computation of the desired kernel function.
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We first recall (see for instance [4]) the biharmonic Green function
for the upper half plane; this is the function
2
z2=¢

U(27<) = IZ - C]QIOg =| + 4Im(z) Im(C)) (zaC) € (C-I- X (C-H

z—
which solves, for fixed ¢ € C,, the boundary value problem
AZU(z,¢) = 6f(2), z€Cy,
U(z,{) = 0, z € R,
Onx)U(2,¢) = 0, zeR.
We start by the following lemma:

LEmMA 3.1. For fixed z € C+ we have

¢ -z z2—Z
=1 -— 2 .
AcU(z,¢) =log 3 +2Re =3/ ¢eCy
Proof. Since U(z, () is symmetric, we can write

2

2 dImQ)Im(z),  (2,0) € Ty x s

(—z

1t is enough to compute the Laplacian of the first term, since

A ((Im(z) Im(c)> = 0.

U(z,¢) = |¢ — 2|* log

Writing
I T S N (S (St
¢ — 2] 10g<‘._7 = (¢ —2)(¢ Z)log(g—z)(f—z)’
we see that
2 (1~ aprog|<=2] ) = (€ - 210 |S=2] + 922
aC [k og| | | =C-Dlog|r—| +{( -2

Applying the differential operator (7% to the expression above, we end
up with the desired result. O

From now on, we adhere to the following convention. For z and ¢ in the
upper half plane we write

z=zxz+iy, y>0,
¢ =1t+1s, s> 0.
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It now follows from Lemma (3.1) that

(t—2)*+ (s~ y)"') 4y(s +v)
t—2)2+(s+y)?) (-2 +(s+y)?*
and by differentiating with respect to s we obtain

5 B Q(S—y) B 2(S+y)
%ACU(Z’O T -2+ (s—y)? (t—2)2+(s+y)?
(t—z)%—(s+y)?

((t— )2 + (s +9)2)*

To get the outward normal derivative of A:U(z,(¢) on the boundary of
the upper half plane, R, it suffices to put s = 0 in the above expression.
Motivated by the biharmonic Poisson kernel of the upper half plane
given by the equation (2), we shall make the following definition.

AcU(z,() = log (

+4y

10
(1) Flat) = 45,800
1 Y v —(z - t)? :
_”{2’2+<w—t>2+y<(y2+(m—t>2>2}’ 2€Cy, teR

In the following lemma, we shall see that for fixed ¢ € R, the function
F(z,t) is biharmonic in its first variable.

LEMMA 3.2. For fixed t € R, we have
AzF(Z,t) = 0, S (C+.

Proof. 1t is well-known that

Y 1
Y oIm(— C
(x —1)% + 32 m(t—Z) 2t

is the usual (harmonic) Poisson kernel for the upper half plane. In par-
ticular, it is biharmonic. What remains is to verify that

y3 — y(w —1)?

(z - 1)* +42))°

is biharmonic. A direct computation shows that the expression

K(l‘,y) =

A2K( )—'8—41(( )+2—84—K( )+8—4K( )
T,Y) = 8%4 z,y 83:283/2 T,y 8y4 T,y

vanishes identically for z = x + iy in the upper half plane. O
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We shall refer to F'(z,t) defined by (4) as the biharmonic Poisson kernel
for the upper half plane. Note that F(z,t) can be written in the form

F(z,t) = F(z +iy,t) = Fy(z — t), z€C4, teR,

1 Yy y? —t2
Fy(t) = = . teR
v(t) w{¢+ﬁ+%ﬁ+ﬁy

We proceed the study of our kernel function by the following lemma.

where

LEMMA 3.3. The integral of the biharmonic kernel function over the
real line is 1;

/Fy(t)dtzl, y > 0.
R
Proof. 1t is easy to see that for y > 0 we have
00 y3 _ yt2 _ yt t=00 _
dt = | — =0.
oo (Y2 +12)? Y+ o

It now follows from the definition of Fy(¢) that
/ Fy(t)dt = —/ % dt = — [arctan (—)] =1.
R TJr Y+t ™ Y) e o

LEMMA 3.4. For fixed y > 0, F), is a positive and even function on
R which is decreasing for 0 < t < .

(]

Proof. 1t is clear that Fy(t) = Fy(—t), that is F}, is an even function
on R. A computation shows that
d 843t
—F ()= ——""———- <0
atv® m(y? +2)3 ~
for y > 0 and ¢ > 0. Therefore F,, is decreasing on the interval 0 < ¢ < 0.
Hence its maximum value is attained for £ = 0, that is,

2
Fy(t) < Fy(0) = — t>0.
Since Fy is strictly decreasing on 0 < ¢t < oo, and Fy(t) — 0 as t — o0,
we conclude that Fj, is positive. U

LeEMMA 3.5. For every § > 0 we have
(a) supjyss Fy(t) =0, as y—0,
(b) flt|>5 Fy(t)dt -0, y—O0.
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Proof. It follows from Lemma 3.4 that

3 __ 52
sup F,(t) = Fy(0) = v vy

+ 0, 0.
>3 2 +12 " (82 +92)2 - y—

This proves part (a). Part (b) follows from the fact that

o0
/ Fy(t)dt -0, y—0,
6

which in turn is a consequence of the monotonicity of Fy,. O

Lemmas 3.3-3.5 are the typical properties of an approximate identity
(similar to the ones that the usual Poisson kernel and other such identi-
ties possess). Thus, it is natural to expect that the approximation prop-
erties like Proposition 4.1 and Theorem 4.2 should follow in the usual
way. We shall see that this is indeed the case.

4. The convergence problem

For a function f € L}(R) we define for every z = z + 4y in the upper
half plane,

u(e) = FIf](2) = / O dt= [ Fyo—07)dt = (Fy* f)(a).
R R
Note that for fixed y > 0 we have

2
Fy,||poory = sup Fy(t) = — < o0.
IFy 1oy = sup By 1) = —
Also we note that

y? — yt?

1
g P o — t .
(y2 +12)2 (1+t2)’ e

It follows thas Fy € LI(R), ¢ < 1 < oo, so that for f € LP(R) the
convolution F, * f € L'(R), meaning that u(z) is well-defined.

PROPOSITION 4.1. Let f € LP(R) for 1 < p < oo. Assume that f is
continuous at a point 2o € R and u = F|f]. Then

lim  u(z,y) = f(zo).

(z,y)—wo
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Proof. Recall that
u(z) = uwy) = [ RO~ 1)dr
R
It follows from Lemma 3.3 that
u(z) = floo) = [ Fyft) (e 1) = fao)) dt.
R

Let € > 0 be given. By the continuity of f at o, we can find § > 0 such
that
€
| RO[ie-9-s@)|d<s.
[tj<d

According to Lemma 3.5, for a fixed 6, the function Fy(t) converges
uniformly to zero as y approaches to zero, so that

€

[ R0l - sl < &
ft|>6

Therefore, separating the integral over R to f,t' <s and f't,> s the result
follows. B
THEOREM 4.2. (a) Let 1 < p < o0, and f € LP(R). Then
| Fy * [~ fllze@y — 0, y— 0.

(b) If f € L*°(R), then F, * f — f weak-star, as y — 0.
(c) If f is bounded and uniformly continuous on R, then F,  f — f
uniformly as y — 0.

Proof. We note that

(Fy+ o)~ £2) = [ BO(e—1) - f@) dr
Therefore, by the Minkowski’s inequality for integrals we obtain

17+ £ = Flisey < [ F(OIAe) — F@lomaey
where fi(z) = f(t — x). Let § > 0 be suitably chosen, we then write

WFy* f = fllzo@) < /|t%<6 Fy(D| fe = fllzrazydt + / ] Fy (WO fe — fllor(az)dt.

lt]>

Since translations are continuous in LP(R), it follows that

“ft - f”LP(R) — 0, t—0,
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so that for small § the first integral can be made less than €/2. As for
the second integral, we note that for fixed 4,

| = e < 205 [ m@a-o  y-o
[t|>6 |tl>6

in accordance with Lemma 3.5. This proves part (a).
As for part (b) we assume that g € L!(R). We then have

[ @) (Fyx 1) @da = [ gte)f@)ds

_ /a(:c)/F()f:v—tdtdw—// t)dt da
= / /F ac—t)—f(:c))g(a:)dtdm

(#a -0~ )|l

= [|Fy«f— fligglany =0,  y—0,

from which () follows. Finally, for the last part suppose that f is
bounded and -aniformly continuous on R. As in part (a),

1Fy * f = fllom < /R EyOlfo = fllemdt.

Again, we may write the integral on the right as th sum of two integrals
on {|t| < 6} and {|t| > 4}. By the uniform continuity of f, the first
integral can be made small for small §. The fact that the second integral
approaches zero follows from the estimate

[ B = Flimiwydt < 20 g [ m@a—o  y-o
|t|>é [t|>d

O

COROLLARY 4.3. For a bounded and uniformly continuous function
f on R, define

w(w +iy) = { %3; Ni), v> 0

Then u is biharmonic on C and continuous on C; UR.

Proof. The corollary follows from part (c) of Theorem 4.2. [



1178 Ali Abkar

REMARK. Given a finite measure p on the real line, we may define
the F-integral of i in a similar fashion:

wa+iv) = Fldaa+ ) = [ Fyfa=du(t) = (Fy » 1))

We mention in passing that both F-integrals of functions in LP, and
F-integrals of measures can not be characterized by norm inequalities,
in contrast to the usual harmonic Poisson kernel.

5. The boundary behavior

This section is devoted to the study of boundary behavior of the F-
integrals of functions f € LP. We shall see that the function v = F[f]
has nontangential limit f(¢) for almost all ¢ € R.

Let f be a measurable function on R. Recall that for A > 0, the
distribution function is defined by

mA) =|{z eR: |f(z)] > A}
Recall also the Chebychev’s inequality
IS 1zs
m(A) < N 0<p<oo.

Let |I| denote the length of an interval I C R. The Hardy-Littlewood

maximal function of f € L} .(R) is

M(z) = supﬁ /, F@)ldt,

where the supremum is taken over all intervals I containing x. For a > 0
and t € R, we denote the cone in C, with vertex ¢ and angle 2 arctan «
by

To(t) = {(z,9): [z—yl<ay, 0<y<oo}

PROPOSITION 5.1. Let f € LY(R), and set

u(ey) = | Fye)f(e—s)ds.

Then
sup |u(z,y)| < AaMf(t),  tER,
(z,y)€la(t)
where A, is a constant depending only on a.
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Proof. The proof parallels that of Theorem 4.2, as presented in [3].
The point is that Fy is a positive even function which is decreasing on
the interval (0, 00), so that it can be written as a convex combination
of functions of the form 5 X(—h,h)(8)- We then consider the sequence of
step functions

N
hn(s) = Zan(-—:vj,:vj)(S)a a; 2 0,
j=1

which are monotone convergent to Fy, and satisfy

N
/ hn(s)ds = Z.‘ijaj < / Fy(s)ds =1.

The rest of the proof goes essentially the same way as in [3]. We will
omit the details here. O

Let u be a biharmonic function defined on the upper half plane. The
function
u*(t) = sup |u(z), teR,
z€l,(t)
is called the nontangential maximal function of u at ¢ € R.

PROPOSITION 5.2. Let f € LP(R) for 1 < p < o0, and set u = F[f].
Then u* € LP'R).

Proof. According to the Hardy-Littlewood maximal theorm we know
that
M fllp < Apllfllp-

The proposition now follows from the preceding one. 0
It is now time to state the main result of this section.

THEOREM 5.3. Let u = F[f] for f € LP(R), 1 < p < oco. Then for
almost all t € R we have

li = f(1).
rod ulz) = f(t)

Proof. Let 1 < p < o0, and u(z) = F[f]. Define

0¢(t) = limsup u(z) — liminf wu(z), teR.
£ Ca(t)32—1 (2) Fa(t)22—t (2)
It is clear from the definition of maximal function u* and Proposition 5.2
that
67(t) < 2" (£) < 244M f(1)
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According to the Hardy-Littlewood maximal theorem, M f(t), and hence
d¢(t) is finite for almost every ¢t € R. It now follows from the Chebychev’s
inequality that

Il _ 2l _ 242
P - 14 -

[t:07(t) > ¢l < =

1M £l
Finally, according to the Hardy-Littlewood theorem we have
1M flip < Apll £l

s> d < (Y g (111)

€

therefore

We now choose a continuous function g such that

If + gllp < €.
Since d7 = ¢4, it follows that

2 p
|t:6f(t)>e|:|t:6f+g(t)>e|SB,,<E||f+g||p> <Cpe? =0, e¢—0.

This implies that for almost every ¢t € R we have d¢(t) = 0, from which
it follows that v has nontangential limit almost everywhere. The fact
that this limit coincides with f almost everywhere, follows from

References

[1] A. Abkar and H. Hedenmalm, A Riesz representation formula for super-bi-
harmonic functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 305-324.

[2] P. R. Garabedian, Partial Differential Equations, John Wiley & Sons, Inc., New
York-London-Sydney, 1964.

[3] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

[4] H. Hedenmalm, A computation of Green functions for the weighted biharmonic
operators Alz|"2*A with a > —1, Duke Math. J. 75 (1994), no. 1, 51-78.

Faculty of Mathematics
Statistics and Computer Science
University College of Science
The University of Tehran
Tehran 14155-6455, Iran
E-mail: abkar@khayam.ut.ac.ir



A new biharmonic kernel for the upper half plane 1181

and

Mathemat.cs Department

Institute for Studies in Theoretical physics and Mathematics
Tehran 19395-5764, Iran

E-mail: abkar@ipm.ir



