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ON SPIN ALTERNATING GROUP
ACTIONS ON SPIN 4-MANIFOLDS

Kazuniko KIYONO AND XIMIN LIiu

ABSTRACT. Let X be a smooth, closed, connected spin 4-manifold
with b1(X) = 0 and signature o(X). In this paper we use Seiberg-
Witten theory to prove that if X admits a spin alternating A4
action, then b3 (X) > |o(X)|/8 + 3 under some non-degeneracy
conditicns.

1. Introduction

Let X be a smooth, closed, connected spin 4-manifold. We denote
by b2(X) the second Betti number and denote by a(X) the signature of
X. In [12], Y. Matsumoto conjectured the following inequality

1) ba(X) 2 5o (X,

This conjecture is well known and has been called the %-conjecture (see
also [7]). All complex surfaces and their connected sums satisfy the
conjecture (see [11]).

From the classification of unimodular even integral quadratic forms
and the Rochlin’s theorem, for the choice of orientation with non-positive
signature the intersection form of a closed spin 4-manifold X is

—2kEs & mH, k>0,
where Ejg is the 8 x 8 intersection form matrix and H is the hyperbolic
. 0 1
matrix ( 10 /)

Thus, m = b5 (X) and k = —¢(X)/16 and so the inequality (1) is
equivalent to m > 3k. Since K3 surface satisfies the equality with &k =1
and m = 3, the coeflicient % is optimal, if the %—conjecture is true.
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Donaldson has proved that if & > 0 then m > 3 [4]. In early 1995,
using the Seiberg-Witten theory introduced by Seiberg and Witten [16],
Furuta [8] proved that

(2) ba(X) > ()| +2.

This estimate has been dubbed the %—theorem. In fact, if the inter-
section form of X is definite, i.e., m = 0, then Donaldson proved that
b2(X) and o(X) are zero [4, 5]. Thus, Furuta assumed that m is not
zero. Inequality (2) follows by a surgery argument from the non-positive
signature, b1(X) = 0 case:

THEOREM 1.1. (Furuta [8]). Let X be a smooth spin 4-manifold
with by (X) = 0 with non-positive signature. Let k = —o(X)/16 and
m = b} (X). Then

2k+1<m
ifm #0.

His key idea is to use a finite dimensional approximation of the
monopole equation. Later Furuta and Kametani [9] used equivariant
e-invariants and improved the above %-theorem as following.

THEOREM 1.2. (Furuta and Kametani [9]). Suppose that X is a
closed oriented spin 4-manifold. If c(X) < 0, then

2(—-0(X)/16) +1, —0(X)/16=0,1 mod 4,
b5 (X) > 2(—o(X)/16) +2, —0(X)/16 =2 mod 4,
2(—o(X)/16) +1, —0(X)/16 =3 mod 4.

The above inequality was also proved by N. Minami [13] by using an
equivariant join theorem to reduce the inequality to a theorem of Stolz
[15].

Throughout this paper we will assume that m is not zero and b1 (X) =
0, unless stated otherwise. :

A Z/2P-action is called a spin action if the generator of the action
7 : X — X lifts to an action 7 : Pgpy, — Pgpin, of the Spin bundle
Psyin. Such an action is of even type if 7 has order 2P and is of odd type
if 7 has order 2711,

In [2], Bryan (see also [6]) used Furuta’s technique of “finite dimen-
sional approximation” and the equivariant K-theory to improve the
above bound by p under the assumption that X has a spin odd type
7 /2P-action satisfying some non-degeneracy conditions analogous to the
condition m # 0. More precisely, he proved
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THEOREM 1.3. (Bryan [2]). Let X be a smooth, closed, connected
spin 4-manifold with b1(X) = 0. Assume that 7: X — X generates a
spin smooth Z/2P-action of odd type. Let X; denote the quotient of X
by Z/2* C Z/2°. Then

2%+1+p<m

if m # 2k + b} (X1) and b (X;) # b3 (X;) > 0 for i # j.

In the paper [10], Kim gave the same bound for smooth, spin, even
type Z/2P-action on X satisfying some non-degeneracy conditions anal-
ogous to Bryan’s.

In this article, we follow a suggestion of Furuta and study the spin
alternating group A4 actions on spin 4-manifolds, we prove that if X
admits a spin alternating A, action, then b5 (X) > [o(X)|/8 + 3 under
some non-degeneracy conditions.

The organization of the remainder of this paper is as follows. In
section 2, we give some preliminaries to prove the main theorem. We
refer the reade-s to the Bryan’s excellent exposition [2] for more details.
We introduce the representation ring and the the character table of
alternating group A4 in section 3. In section 4, we we use equivariant K-
theory and representation theory to study the G-equivariant properties
of the moduli space. In the last section we give our main results.

2. Notations and preliminaries

We assume that we have completed every Banach spaces with suitable
Sobolev norms. Let § = ST & S~ denote the decomposition of the
spinor bundle into the positive and negative spinor bundles. Let D :
I'(ST) — I'(S™) be the Dirac operator, and p : A% — Endc(S) be
the Clifford multiplication. The Seiberg-Witten equations are for a pair
(a,0) € Q*(X,v/—1R) x ['(ST) and they are

1
Do +p(a)p=0,  pldta)—¢® ¢+ l¢l*id=0,  da=0.
Let
V=THW-1At@ sT),
W' =T(S™ @ +v—1su(ST) ® vV—1AY).
We can thirnk of the equation as the zero set of a map

D+Q:V-W,
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where D(a, ¢) = (D¢, p(d*a), d&"a)), Q(a, 8) = (pla)$, ¢ @ 6" — L6 ]%id,
0), and W is defined to be the orthogonal complement to the constant
functions in W'.

Now it is time to describe the group of symmetries of the equations.
Define Pin(2) C SU(2) to be the normalizer of S* C SU(2). Regarding
SU(2) as the group of unit quaternions and taking S* to be elements of
the form eY~1 Pin(2) then consists of the form eV~ or eV=10.7. We
define the action of Pin(2) on V and W as follows: Since ST and S~
are SU(2) bundles, Pin(2) naturally acts on I'(S¥) by multiplication on
the left. Z/2 acts on I'(A};) by multiplication by +1 and this pulls back
to an action of Pin(2) by the natural map Pin(2) — Z/2. A calculation
shows that this pullback also describes the induced action of Pin(2) on
v/—=1su(ST). Both D and Q are seen to be Pin(2) equavariant maps.

Let X be a smooth closed spin 4-manifold. Suppose that X admits
a spin structure preserving action by a compact Lie group ( or finite
group) G. We may assume a Riemannian metric on X so that G acts
by isometries. If the action is of even type, Both D and Q are G =
Pin(2) x G equavariant maps.

Now we define V) to be the subspace of V spanned by the eigenspaces
D*D with eigenvalues less than or equal to A € R. Similarly, define
W) using DD*. The virtual G-representation [V\ @ C] — [W), ® C] €
R(G) is the G-index of D and can be determined by the G-index and is
independent of A € R, where R(G) is the complex representation of G.
In particular, since Vy = KerD and Wy = CokerD & Cokerd™, we have

Vi@ Cl—-Wr®C]=[Vu®C| - [Wy®C| € R(G).
Note that Cokerd™ = H% (X, R).

3. The alternating group Ay

The alternating group Ay is the group of even permutations of a set
{a,b, ¢, d} having 4 elements; it is isomorphic to the group of rotations
in R? which stabilize a regular tetrahedron with barycenter the origin.
It has the following 12 elements:

(a) the identity element 1;

(b) 3 elements of order 2, z = (ab)(cd), y = (ac)(bd), z = (ad)(be),
which correspond to reflections of the tetrahedron through lines joining
the midpoints of two edges.
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(c) 8 elements of order 3: (abc), (acbh), ..., (bed), which correspond to
rotations of i%ﬁ with respect to lines joining a vertex to the barycenter
of the opposite face.’

Set t = (abc), K = {1,t,t2} and H = {1, 2,y, z}. We have
tot ™! = z, tzt =y, tytl=u

moreover H and K are subgroups of A4, H is normal, and HNK = {1}.
It is easy to see that each element of A4 can be written uniquely as a
product h - k with h € H and k € K.

There are the following 4 conjugacy classes in Ay : {1},{z,y, 2}, {t,
tz,ty,tz}, and {t?,t%x,t?y,t>2}, hence 4 irreducible characters. There
are three characters of degree 1, corresponding to the three characters
X0, X1, and x2 of the group K extended to A4 by setting x;(h-k) = xi(k)
for h € H and k € K. The last character 1 is the character of the natural
representation of A4 in R3 (extended to C3 by linearity). Thus we have
the following character table for A4 [14]:

1|z |t |
xo | 1] 1 1|1
x1l11] 1| w |w?
x2 1] 1 |w? | w
¥ [3]=-1107]0
where w = e2™/3 = —% + z@

Let X be a smooth closed spin 4-manifold. Suppose that X admits
a spin structure preserving action by a compact Lie group (or finite
group) G. We may assume a Riemannian matric on X so that G acts
by isometries. This G-action can always be lifted to G-actions on the
spinor bundles, where G is the following extension

1—>Z2—>é—>G—>1.

Recall that the G-action is of even type if (@ contains a subgroup
isomorphic to G, and in turn is of odd type, otherwise. For alternating
group A4, the extension of A4 by Z: is isomorphic to Zy x Ay, that is
any spin alternating group A4 action on spin 4-manifolds is of even type.
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4. The index of D and the character formula for the K-
theory degree

The virtual representation [Vyc] — [Wac] € R(G) is the same as
Ind(D) = [kerD] — [CokerD]. Furuta determines Ind(D) as a Pin(2)
representation; denoting the restriction map r : R(G) — R(Pin(2)),
Furuta shows

r(Ind(D)) = 2kh — ml,
where k = —0(X)/16 and m = b} (X). Thus Ind(D) = sh — t1, where s
and ¢ are polynomials such that s(1) = 2k and ¢(1) = m. For a spin A4
action, G = Pin(2) x Ay, we can write

s(€,m) = ag + bo€ + co€® + don

and
tEm) =a1+ b+ +din
such that ag +bg+cg+3dg =2k and a1 + b1 +c1 +3di =m = b;(X).
For any element g € A4, denote by < g > the subgroup of A4 gener-
ated by g. Then we have
dim (H+(X)™) = a1 = b} (X/Ag),
dim (H+(X)<@)>) = gy + d; = bJ (X/ < (abc) >),
dim (HF(X)<@)(D>y = g; 4 by 4+ ¢; + dy = bF (X/ < (ab)(cd)) >),
dim (HT (X)) = a1 + b1 + &1 = b3 (X/H).

The Thom isomorphism theory in equivariant K-theory for a general
compact Lie group is a deep theory proved using elliptic operator [1].
The subsequent character formula of this section uses only elementary
properties of the Bott class.

Let V and W be complex I" representations for some compact Lie
group I'. Let BV and BW denote balls in V and W and let f: BV —
BW be a I'map preserving the boundaries SV and SW. Kp(V) is
by definition Kr(BV,SV), and by the equivariant Thom isomorphism
theorem, Kr(V) is a free R(I') module with generator the Bott class
A(V). Applying the K-theory functor to f we get a map

f*: Kp(W) — Krp(V)
which defines a unique element ay € R(T") by the equation f*(A(W)) =
as - A(V). The element oy is called the K-theory degree of f.
Let V, and W, denote the subspaces if V and W fixed by an element

g € I' and let V;]l and ng be the orthogonal complements. Let f9 :
Vy — Wy be the restriction of f and let d(f9) denote the ordinary
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topological degree of f? (by definition, d(f9) = 0 if dim V, # dim Wj,).
For any B € R(T'), let A_13 denote the alternating sum X(—1)*A!3 of
exterior powers.

T. tom Dieck proved the following character formula for the degree
Gy

THEOREM. ([3]). Let f: BV — BW be a I'-map preserving bound-
aries and let ay € R(I") be the K-theory degree. Then

trg(ay) = d(f)trg A (Wy — V),
where try is the trace of the action of an element g € T".

This formula is very useful in the case where dimV; # dim W, so
that d(f9) = 0.

Recall that A_1(2;a;r;) = [[,(A=17:)* and that for a one dimensional
representation r, we have A_;7 = (1 — r). A two dimensional represen-
tation such as h has A_1h = (1 — h + A®h). In this case, since h comes
from an SU(2) representation, A%h = deth =1 s0 A_1h = (2 — h).

In the following by using the character formula to examine the K-
theory degree ay, of the map f) : BV)c — BW) ¢ coming from the
Seiberg-Witten equations. We will abbreviate oy, as o and V) ¢ and
Wyc as just V and W. Let ¢ € S' ¢ Pin(2) C G be the element
generating a dense subgroup of S!, and recall that there is the element
J € Pin(2) coming from the quaternion. Note that the action of J on
h has two inveriant subspaces on which J acts by multiplication with

v—1 and —v/—1.

5. The main results

Consider a = ay, € R(Pin(2) x Ay), it has the following form
o0
o=qay+ agl + Zaihi,
i=1

where o; = m; +ni€ + L2 + fin, i > 0 and dy = g + 70 + lo€% + fon.
Since ¢ acts non-trivially on h and trivially on 1, so

dim(V(§,m))g—~dim(W(£,n))p = —(a1+b1 +e1+3d1) = —m = b (X).
So if b5 (X) > 0, trya = 0.
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Since ¢t acts non-trivially on V(&,n)h, ¢ trivially on 1 and t acts
trivially on a; and non-trivially on 1€ and c¢;£2, the action of t on din
has a one-dimensional invariant subspace. So we have

dim(V(¢,m)) gt — dim(W (€, 7)) gt = —(a1 + d1) = —b3 (X/ < (abc) >).
Similarly,
dim(V(§,7))g2 — dim(W (&,7)) g2 = —(a1 + d1) = —b3 (X/ < (abc) >).

So if a1 + di = b3 (X/ < (abc) >) # 0, trya = trypa = 0.

Since ¢z acts non-trivially on V({,n)h, ¢z acts trivially on 1, el
and c1€21. The action of ¢z on dinl has a one-dimensional invariant
subspace. So

dim(V(§,7))ge — dim(W(§,n))gz = —(a1+b1+c1 +di)
= —b3(X/ < (ab)(cd) >).
Soifa;+b14+c1+dy = b;(X/ < (ab)(ed) >) # 0, trgza = 0.

If b5 (X) — bf (X/ < (ab)(cd) >) # 0, that is d1 # 0, we have trga =

trgr = trgea = trgpa = 0 which implies that

o0
0 = trga =trg(ag+ dpl + Z aih;)

i=1
w . .
= trgag + tredp + Z trypai(¢' +¢7")
i=1

= (mo+ng +lo + 3f0) + (mig + rip + lo + 3 /o)

+)trgou(¢' +¢70),

i=1

o @]
0 = trga = tre(ao+ ol + Y (¢ +¢7%)

i=1

= (my+ now + l0w2) + (Mo + rigw + l~0w2)

[e o]
+ > treai(¢ + 670,
i=1
and so on. From these equations we have ag = —ag and «; = 0,7 > 0,
that is o = ag(1 — 1).
Next we calculate tryo. Since J acts non-trivially on both A and I,
dimV; = dimW; = 0, so d(f’) = 1 and the character formula gives
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try(a) = trg(A-1(ml — 2kh) = try((1 — 1)™(2 — h)~%) = 22k yging
tryh =0 and tryl = —1.

Now we calculate trja. Since Jt acts non-trivially on both V(£,n)h
and W(¢,n)1, so d(f’*) = 1. By tom Dieck formula, we have

try(a) = trp[A_i1(ar +b01&+ €+ din)i
—A_1(ao + boé + co&? + don)h]
= trpl(1-1)* (1 - €D (1 - 1)1 (1 - nl)*®
X(1—h)79(1 — €R)*(1 = €2h) (1 — nh) =]
= 29(1 4+ w)? (1 +w?)® . 2% . 2700 . (] 4 %) b0
X (1 + w) 274
= iglartd)—(aotdo) (1 | )h1=co(1 4 ,2)1—bo
2(a1+d1)—(a0+do)(1 +w)(bo+b1)—(co+c1).
Here the 2-dimensional representation h decomposes into two complex
line on which J acts as v/—1 and —v/—1. And the 3 dimensional repre-
sentation 1 decomposes into three complex line on which ¢ acts as 1, w

and w?. J acts on 1 as —1.
Similarly we could get

tr e (a) = 2(a1+d1)—(a0+d0)(1 + w2)(bo+b1)—(co+81)'
The 3-dimensional representation 1 decomposes into three complex line
on which = acts as 1, —1 and —1.
Since Jz acts non-trivially on V' (€, n)h, and Jz acts non-trivially on

1, a1¢1 and ¢;£%1, but the action of Jz on dinl has two-dimensional
invariant subspace. So we have

dim(V(&,7)) je — dim(W (&, 7)) g = —2d;.

Then if dy # 0, trj,c = 0.
By direct calculation, we have

(3) tryog = mo +ng + lp + 3f0 — 2m—2k—1‘

9(a1+d1)—(ao+do) (1 + w)(b0+bl)—(00+01)
(4) triag = mo + now + l0w2 =

2
2(a1+d1)—(ao+d0) 1 2 (bo+b1)—(co+c1)
(5) trpap =mo +n0w2 +lyw = ( —21—0.) )
(6) ta00 = mo +ng +lo — fo = 0.

Here we use 0 = trjya = try(2 - ap) = 2 - trpap and so on.
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From (3) and (6) we get fo = 2™ 2%=3. So we have the following
main result.

THEOREM 1. Let X be a smooth spin 4-manifold with b1(X) = 0 and
non-positive signature. Let k = —¢(X)/16 and m = b3 (X). If X admits
a spin alternating group A4 action, then 2k+3 < m if b (X) —b3 (X/ <
(ab)(ed) >) #0.

As an element of R(A4), we know that Inds4,D = Inda, D, so from
Indg,D = ap + b€ + co€? + dgn we have by = cy. Similarly since
Ht(X,C) = HY(X,C), so from H*(X,C) = a1 + bi + c1£2 + dun
we have b = c1.

Since ag and dy are even numbers, we could denote ay = 2af, and
do = 2dy,, then we have

mo
(7) no
lo
ofar-+d1)~2(a-+dp)—1 1 1 1 92((b1+d1)—(bo+2dp)) -2
= 1 w? w 1
3 1 w w? 1

From above we get
2(a1+d1)—2(a6+d6)—1

3

mo = (22((br+d)—(bo+2d5))~2 4 9y

and
9(a1+d1)—2(ag+dg)—1
3

PROPOSITION 1. Let X be a smooth spin 4-manifold with b1(X) =0
and non-positive signature. If X admits a spin alternating group As
action, then

dim ((Ind 4, D)<(®9>) 4+ 1 < b} (X/ < (abc) >)
if b (X) — b3 (X/ < (ab)(cd) >) # 0.
Proof. Since lg,ng € Z, so we have
2(a1+d1)_2(a6+d6)_1
3

from this we have 2(01+d1)~2(ap+do)~1(92((br+d1)—(bo+2d0))~2 _ 1) € 37
Z. But

(a1 4+-dv) = 2(a)+dh) — 1)+ (2((by +d1) — (bo+2d5)) —2) = m—2k—3 > 0,

(22((b1+d1)—(b0+2d6))—2 -1).

(22((b1+d1)“(b0+2d6))“2 -1 ez
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that is,
9l(a1+d1)—2(ag+dp)~1)+2((br+d1)~ (bo+2dp)) -2 ¢ 7.

From this we have 2(@1+d1)=2(atdo)-1 ¢ 7 je 2 +dp) +1 < a1 +
dy, that is, dim ((Indg, D)<(®9>) + 1 < bF(X/ < (abc) >) and this
completes the proof of Proposition 1. O

Next we assume that b3 (X/A4) > 0 and b3 (X) = b3 (X/((ab)(cd))),
that is a; > 0 and d; = 0.

From tom Dieck formula, we have

trjo = gm—2k

We also have
trya = 2(mo +no + lo + 3f0),

tra = 2—ao—do+a1(1 + w2)—bo-—do+01 (1+ w)—-co—do+b1,
and
tryca = 2(mg + now + low?), trpa = trza.
Now we look at trj a:
1
Z acts on h as -1 , so dim(Vh)j, — dim(W1)y, =
-1

—2d; = 0, and hence d(f/?) = 1. From tom Dieck formula, we have

tryza = tryg[Ai(ar 4+ b€ + €)1 — Mi(ao + bo& + co€® + don)h]
= tr[(1- D)1 - €)1 - )21 -h)™.
(1 - gh)™0(1 — €h) (1 — )]
— 9~ao—bo—co—3do+ai+bi+er _ gm—2k

On the other hand, we have trj,a = 2(mg + no + lo — fo), so mg +
no +lo — fo = 221 but mo + ng + lo + 3fo = 2™ ?*~1. So we have
the following result

PROPOSITION 2. Let X be a smooth spin 4-manifold with b1(X) =0
and non-positive signature. If X admits a spin alternating group Ay
action, then the K-theory degree o = ag(1 — i) for some ag = mg +
noé + &2 if b7 (X/A4) > 0 and b (X) = b3 (X/ < (ab)(cd) >).

Finally we assume that b} (X/A4) = 0 and b3 (X) = b5 (X/((ab)(cd))),
that is, a; = d; = 0.

Case 1. b} (X/A4) = 0 and b (X) = b3 (X/((ab)(cd))), but b3 (X) #
0.
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We know that ¢ acts on h as ( ¢ ¢ ) Now we consider the

action of ¢t.

The action of ¢t on h, £h, £2h and nh has no invariant space, and the
action of ¢t on ¢1 and €21 has no invariant space either, but ¢t acts on
1 trivially, and the action of ¢t on n1 has 1-dimensional invariant space.
So dim(Vh)g — dim(W1)g = —(a1 + d1) = 0 and d(f*¢) = 1.

The eigenvalues of the action ¢ on 7 are 1, w and w?.

trgee = d(fP)(1—¢)(1—¢ )] ®[(1 - we) (1 —we™ )] % .
[(1~0?)(1 - w707 (1+ w)" (1 +w?)".

Since trear : U(1) — C is a C%function, ¢ is a generic element, so
—ag —dg >0, —by —dp > 0, and —cg — dg > 0.

On the other hand, IndD = —% € Z, but we have IndD = ag + by +
co+3dy £0,s0a9+dy =byg+dy=co+dyg =0, and X is homotopic to
#,52 x S?% for some even integer n.

Case 2. HS(X) =0, that is, H*(X) = H*(S%).

z acts on 1, £ and &2 trivially, and = acts on 7 as -1 ,
-1
the actions of ¢z on 1, £1, €21 and 51 all have a 1-dimensional invariant
space.
If Hf (X) =0, that is, a1 = by = ¢1 = d; = 0, we have dim(Vh) 4, —
dim(W1)g =0, so d(f*") = 1. Then from tom Dieck formula, we have

trgze = [(1— ¢)(1 — ¢7H)] 70 070" P[(1 + ¢)(1 + ¢~ 1)) 2.

Since trzea : U(1) — C is a C%-function, ¢ is a generic element, so
ag +bo+ co+dyg <0 and 2dg < 0.

On the other hand, indD = ~% € Z, but indD = ag+bo+co+3dp < 0,
so indD = 0. Moreover ag + by + co + dyp = 0 and 2dy = 0, that is,
ag = by = ¢y = dp = 0, so we have Indg,D =0 € R(A4). "

In summary, we have the following result:

PROPOSITION 3. Let X be a smooth spin 4-manifold with b1(X) =0
and non-positive signature. If X admits a spin alternating group A,
action, if b (X/A4) = 0 and b3 (X) = bJ (X/ < (ab)(cd) >), then as
an element of R(A4), Inda,D is a multiple of 1 + ¢ + €2 —n, and X is
homotopic to 4,52 x S? for some even integer n. Moreover if bi(X) =0,
that is, H*(X) & H*(S*), then Inda,D = 0 € R(A,).



On spin alternating group actions 1195
In fact we can apply the following equivalent version of Furuta’s %0—
theorem to obtain the following result similar to Proposition 1.

PROPOSITION 4. (see also [6]). Let X be a smooth closed spin G-
manifold of dimension 4, where G is compact. Suppose that b;(X) =0
and o(X) < 0. If the G-action is of even type so that ind®(D) # 0, then

b (X/G) > ind%(D) +1,
where ind®(D) = dim(ker D)¢ — dim(coker D)C.

For the subgroup < (abc) > of A4, applying above proposition we
can get

PROPOSITION 5. Let X be a smooth spin 4-manifold with by(X) =0
and non-positive signature. If X admits a spin alternating group Ay
action, then

dim ((Ind 4, D)<(®9>) + 1 < bf (X/ < (abc) >)
if dim ((Ind 4,.0)<(eb9)>) =£ 0.

REMARK. If dim ((Inda, D)<(®)>) =£ 0, that is, ag + do # 0, then
from the discussion of Case 1, we know a; # 0 or d; # 0. So the
condition in Proposition 1 is still a little different from the condition in
Proposition 5.

Now we locok at a concrete example of Ag-action. Let X be the K3
surface of Fermat type, that is, X = {[z0, 21, 22, 23] € CP3| Z?:o 7t =
0}, the smooth “standard action” of A4 on X is given as permutations
of variables. For this action it is easy to get that Inda,D = 2 € R(A4)
and Ho(X, Z) = 6+ 2(6 4+ €2) 4+ 4n € R(Ay), so b} (X/A4) = 3 > 0, then
by Theorem 1, we must have b (X) = b (X/ < (ab)(cd) >), that is,
dy =0.

Applying Proposition 4 to the “standard action” of A4 on the above
K3 surface of Fermat type, we have dim(H, (X)44) > dim((Inda,D)"4)
+1=2+1=3, but dim(H; (X)) = 3, so (H, (X)) = HF (X).

For homotcpy K3 surface we have

ProrosiTION 6. Let X be a homotopy K3 surface. If X ad-
mits a spin alternating group A4 action, then as an element of R(Ay),
HF(X,C)=3-10r Hf (X,C)=1+£&+¢€2

Proof. If Hy (X, C) contains 7 term, that is, di > 0, by Theorem 1,
it is impossible, so Hy (X, C) = a + b¢ + c£%, but since dim H; (X) = 3,
so the proposition follows. |
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