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ANTI-HOLOMORPHIC TWISTOR
AND SYMPLECTIC STRUCTURE

DosANG JOE

ABSTRACT. It is well known that the twistor, section of twistor
space, classify the orthogonal almost complex structure on even
dimensional Riemannian manifold (X, g). We will show that exis-
tence of a harmonic and anti-holomorphic twistor is equivalent to
having a symplectic structure on (X, g).

1. Introduction

By definition, a manifold having a non-degenerate closed two form w
is called a symplectic manifold. This category of manifolds was firstly
understood as that of Kahler manifolds, which has even odd betti num-
ber, for example, later on some mathematician like B. Thurston and
R. Gompf constructed examples of symplectic manifolds which cannot
have Kahler structure. Moreover R. Gompf [2] find a systematic way of
constructing symplectic manifolds and show that every finitely presented
group can be realized as a fundamental group of a symplectic 4-manifold.
It reveals that -he symplectic category is much more bigger than Kahler
one and expected to be characterized as cohomology condition of given
manifold such as ¢ € H%(X,R) and 0 # aU---Ua € H'™(X,R). This
expectation has been broken in the advent of Seiberg-Witten theory for
the 4-dimensional topology. It has been known that every symplectic 4-
manifold has non-zero Seiberg-Witten invariants [5, 6], which indicates
that condition of having symplectic structure on 4-manifolds is quite
subtle. Taking closer look at the Taubes’s paper [5], we can find that
he was making use of the characterization of symplectic form, which is
there are canonical Spin® structure associated almost complex structure
J and naturally induced a nowhere vanishing positive spinor u which is
harmonic, i.e., ]JDu = 0. In this paper, we are going to show that such a
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characterization is equivalent to the existence of the symplectic form on
a given manifold. First of all, note that symplectic form w on a given
manifold realized as an imaginary part of Hermitian metric for some
almost complex structure J on T'X. Hence the existence of almost com-
plex structure is a necessary condition for that of symplectic structure.
Given a Riemannian even dimensional manifold (X, g), the orthogonal
almost complex structure is equivalent to a section of the twistor space
which is a canonical fiber bundle of SO(2m)/U(m). We will discuss on
this in the section 2. After choosing a twistor u , equivalently having
an almost complex structure J, there is the naturally associated Spin,,,
equivariant Hermitian metric on (TX,g,.J) and a canonical Spin® rep-
resentation. The imaginary part of the Hermitian metric w is our can-
didate for the symplectic form. It can be proved that the condition for
dw = 0 is equivalent to the section u is anti-holomorphic and harmonic
Mu = 0), where u can be understood as a nowhere-vanishing positive
spinor of the canonical positive spinor bundle. To prove this theorem is
the main purpose of this paper. It also gives a simple characterization
of symplectic structure on smooth 4-manifolds, which is the same as the
Taubes’ analysis of symplectic form. Conclusively, the condition for w
being a symplectic form is m(m — 1)/2 + m(m — 1)(m — 2)/6 which is
stronger than that condition for being integrable which is m(m — 1)/2,
in the sense of the number of equation required. This is just because
the we study the symplectic structure as an almost complex structure
compatible with a given metric g. It suggests that there should be more
restrictive twistor, i.e., almost complex structure compatible with given
metric g which supports symplectic structures on a manifold. Let us
introduce the preliminaries about the pure spinor and twistor.

2. Pure spinor and twistor

The following materials are collected from the book of Lawson and
Michesohn [3]. Fix R™ be the standard inner product ((,)) real vector
space and extend this metric C-linearly to C* = R* @ C. Let Cl,, =
Cl,, ® C be the associated complexified Clifford algebra. Let - be the
fundamental Cl,-module which defines the irreducible complex spinor
space. For each spinor o € 8, we can consider the C-linear map

Jo : C" — B~ given byj,(v) =v 0.

Generically, this map is injective. However, there are interesting spinors
for which dim(ker j5) > 0.
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DEFINITION 2.1. A complex subspace V' C C™ is said to be isotropic
(with respect to the bilinear form (-, -)) if (v,w) =0 for allv,w e V.

We define a hermitian inner product (-,-) on C" by setting (v, w) =
(v,w). Clearly, if V. C C™ is an isotropic subspace, then V' L V in this
hermitian inner product. In particular, therefore, we have

2dimc Vv <n.

DEFINITION 2.2. A spinor o is pure if ker j, is a maximal isotropic
subspace, i.e., if dim(ker j,) = [n/2].

Denote by PB the subset of pure spinors in 8, and denote by Z,, the
set of maximal isotropic subspaces of C™ Both P® and I,, are naturally
acted upon by the group Pin,, and the assignment o +— ker j, gives a
Pin,,-equivariant map

K:P3+—1T,.
From this point on we shall assume that n = 2m is an even integer, and
furthermore that R?™ is oriented.

DEFINITION 2.3. An orthogonal almost complez structure on R?™ is
an orthogonal transformation J : R?™ — R?™ which satisfies J? =
—Id. For any such J, an associated unitary basis of R*™ is an ordered
orthonormal basis of the form {e;, Jei,...,em, Jem}. Any two unitary
bases for a given J determine the same orientation. This is called the
canonical ortentation associated J.

Let C,, denote the set of all orthogonal almost complex structures on
R2™, It is easy to see that Cy,, is a homogeneous space for the group
Oapm. It falls into two connected components C;}, and C,,, where C}; =
SO9y /Upy, consists of those almost complex structures whose canonical is
positive (i.e., agrees with given one on R?™). Associated to any J € Cp,
there is a decomposition

c*m =V (J) e V(J),
where
V(J)={ve C™: Jv=—iv} = {vg +iJuvp : vo € R™™}.
There is an Osy,-equivalent bijection
Crn —5 Tom

which associates to J the isotropic subspace V(J) Let Z, denote the
component corresponding to C. Using the complex volume element
wc = i™e1 - €2m, We have a decomposition 8o = SE ® B¢ into +1
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and —1 eigenspace respectively. Easy calculation gives a decomposition
Pg = PET]] P8~ of the pure spinor space into positive and negative
types. Let P(P$") denote the projectivization of the pure spinor space,
ie., P(P$%) = P8/ ~, where we say that 0 ~ ¢’ if o = to’ for some
t € C. Each of the space P(P$%),CE and 7 are acted upon by
Sping,,, in fact by SO2m,.

PROPOSITION 2.4. The maps o — K(o) and J +— V(J) induce SOy, -
equivariant diffeomorphisms

ppgt) B 13 Yt and  P(PET) S I Y C

We refer to the original book [3] for details. .
For the sake of further discussion, we will fix V € Lf and let

J € C be the associated complex structure. Choose a unitary basis
{e1,Je1,. .. em, Jem} of R?™ and set

1
g5 = —
V2

1
(ej —iJe;) g = —=(ej +iJej).

V2
Define
(1) wj = —&;E; w; = —g;¢5.

Let W be a linear subspace invariant under multiplication by e; and
Je;. Then there is a hermitian orthogonal direct sum decomposition

W=W,;® WJ{,
where
W; =w; - W = ker(ug;lw) and W; =w; W = ker(ue,|w)

and, where e, : W — W is defined by p.,(w) = ¢; - w. By direct
inductive calculation, we can construct

8 =ker(uz, ) N--- Nker(ys,) dimcP,, =1.

The complex volume form wc = i"e1Jey - - - emJen, has the value +1 on
8. because £jo = 0 = —ie;Jejo = 0. Therefore, §,, C 8¢.

We clearly have that V(J) = ker j, for o € $,,. Hence §,, is inde-
pendent of the choice of unitary basis and the map V — [$, ] gives the
desired map K~ for the above proposition.

DEFINITION 2.5. The bundle 7(X) = P(P$™") is called the twistor
space of X.



Anti-holomorphic twistor and symplectic structure 1293

Note that P(P$™) is an SOs,,-bundle and is globally defined whether
or not X is a spin manifold.

The total space of 7(X) carries a canonical almost complex structure
defined by using the canonical decomposition of tangent space of 7(X),
which is induced by the Riemannian connection of X.

T(r(X)) = VK,

where H is a field of horizontal planes and V is the field of tangent
planes to the fibers. As noted, V has an almost complex structure in-
tegrable on the fibers since the fiber is naturally homogeneous complex
manifold (2 SOa,,/U(m)). The bundle ‘H has a “tautological” almost
complex structure defined, via the identification m, : Hy — T X, to be
the structure J itself.

The question of integrability of J already accomplished by M. Michel-
sohn. >

THEOREM 2.6. [3, 4] Let X be an oriented (even-dimensional) rie-
mannian manifold with an almost complex structure determined by a
projective spinor field w € I'(7(X)). Then this almost complex structure
is integrable if and only if v is holomorphic.

This will be proved in Remark 3.3. As mentioned above, 7(X) carries
a canonical almost complex structure. Now a Cl-map between almost
complex manifolds f : (X, Jx) — (Y, Jy) will be called holomorphic
(resp. anti-holomorphic) if its differential f, is everywhere J-linear(resp.
anti-J-linear) i.e., if f, o Jx = +Jy o f, respectively.

REMARK 2.7. More succinctly one could say that cross-section of
7(X) induce almost complex structure, and holomorphic cross-section
induce the integrable ones However, the condition that a cross-section u
be holomorphic is not linear since the complex structure on X depends
itself on u.

We will prove that the complimentary condition for the holomor-
phicity, which ‘s anti-holomorphic and harmonic is equivalent to that u
induce a symplectic structure on X.

DEFINITION 2.8. w € Q2(X) is a symplectic form if it is non-degen-

erate closed form. Moreover, (X, w) is called a symplectic structure on
X.

Given a twistor v € P(P$), there is naturally associated non-degen-
erate differential 2-form. It is induced by the hermitian metric with
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respect to the almost complex structure J and Riemannian metric g on
TX ie.,

where J is the almost complex structure corresponding to s € P(PB).
Moreover it can be written as in terms of unitary basis, in other words,
w =y rger A(Je)*, where e* € T*X such that e*(v) = g(e,v) € R.
Recall that w; = —¢,&; for complex unitary basis {€1,...,&m,E1- Em}
of (TX ® C). Since wj = —¢;&; =1 —iej - Jej, iw =m — 3 wj.

wrwm = [J(1—ie; - Jes)
- l_izej'Jej _Z(ej'Jej)‘<€k'Jek)+--.
i#k
= 1—iw+ (1/2)(=1)%w Adw + - - -
+(1/m)(~1)" 6w A - - dw
= 1—iw+ (1/2)(=)%" + - + (1/ml) (=)™,
k times

where wF =W A - Aw € QF(X).

REMARK 2.9. The above equality comes from the identification be-
tween TX and TX* via Riemannian metric. Note that (1/m!)imw™ =
ey -Jer e - Jem = we.

Note that xcw® = k!/(m — k)lw™ F ie.,
dv=02dv=d'w=0& Aglw1+ - +wn) =0,

where A, is the Laplacian operator with respect to metric g. Hence we
have that w defines a symplectic form if and only if & = w1 + -+ + wny
is harmonic. Our goal is to prove the following theorem.

THEOREM 2.10. Let X be an oriented (even-dimensional) riemannian
manifold with an almost complex structure determined by a projective
spinor field w € I'(7(X)). Then this almost complex structure carries
symplectic structure if and only if u is harmonic and anti-holomorphic.

The product element, ¢ = @y - - - Wy, (conjugate of the above product),
of the complexified Clifford algebra Cly,,(X) can be characterized at
least locally by an element of ¢ € End($™) such that

[0 if o€stCBg
Q(”)“{ka keC* andif [o]=s
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Note that we have not defined a complex spin representation § globally
over X. Without any specification of the complex spinor bundle, the
W1+ Wy is well-defined as an element of Cly,(X). Using the almost
complex strucsure associated with the twistor u, we can define canonical
spin® structurs and canonical complex spin representation. Given the
canonical Spin€ representation, the product element ¢ = 2"u®u*, which
is an element of ¢ € Endc($™) in a way of that g(e) = (o, u)u. In the
next section, we will prove that (dw)u = 0 if and only if IDu = 0 by
using the action of g.

3. Spin®€ representation and proof of Theorem 2.10

Since Spin¢ = Spin,, Xz, U(1), we have a short exact sequence

0 — Zy — Sping > SO, x U(1) — 1.

A principal SOp,-bundle P carries a Spin© structure if any only if the
wz(P) is the mod 2 reduction of an integral class. Given a twistor
u € P(P$1), there is the canonical orthogonal almost complex structure
J on TX associated with u. This J defines a canonical Spin® structure
dete TX = K;{l since the first Chern class of K;{l is an integral lift
of the second Stiefel Whitney class, i.e., c1(K3') = wa(X) mod 2. Let
B¢ be the associated spinor bundle. Using the complex volume form
vV—1"¢e;-Jer - -ep - Jem, we have the decomposition of B by the
+-eigenspace of the complex volume element, where $* = (1 + we)Be-

Let ) 1
g = —(ej — iJej) and E&; = —(ej +iJ€j)

V2 V2

be an unitary basis for TX as above. Define

$C = ®Si17"'7im = @ker(ﬂeil) m T ker(/"l’ﬁ'im)7

Ley, '['k: =k
where p., = A
)U’Ezk { Mﬁ i = k
index used as above, define |o| be the number of elements of the subset
{ix = k}. Then we have

Be = @Szlzm and Bg = @ Si1~~-z‘m'

|o|=2i lo|=2i—1

Let 0 = {i1,...,im} be the complex

Especially, the twistor u is contained in $1 - which is characterized as
g;-u = 0 for all . We can express the Dirac operator in terms of the
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unitary basis, which follows that
D = e Ve +Je Ve

1 _ 1
= 5(63 +6.7) . Vs,»-{—gj - 5(8 _EJ) VE]'—E]
= gj'ij+€j'vgj-

REMARK 3.1. Note that the covariant derivative 57 is Spin® connec-
tion which is induced from both the Levi-Civita connection and the U(1)
connection on K ;(1 It should be well-noticed that our theorem is noth-
ing to do with a U(1) connection. Even though the condition we have
imposed is related to simply “local” question, the spin® structure enable
us to work with globally. Furthermore, the following argument we will
present below works finely without any spin® structure.

To define a Dirac operator on the spinors, we should specify a U(1)
connection on K3'. There is a canonical U(1) connection unique up to
gauge transformation Ag such that (u,u) = 0. We will abuse the nota-
tion D for the Dirac operator, D 4, which is induced by the Levi-Civita
connection and the canonical U(1) connection Ag. Our index notation
convention indicates that 7, €k = 5,0t (&)e; and Fé’k = @k (&;) is the
Chistoffel symbol. If e; = é3;_1, Je; = €a; then ¢; = %(é%—-l — ’iézj),

where i = v/—1. Then we have
= l l = _ = l= =1
Ve, Ck = 0381+ CjpEl V& €k = ijz + Cj k€L
= __ l —
Ve, €k = bj’kéfl +dt kgl , Ve €k = b] &L+ d kEl

Since the Levi-Civita connection is naturally compatible with the Her-
mitian metric on TX ® C, we have

a‘j,lk = <VEjgk7€l> = —<gka V§j5l> = _a’]ﬁ'

By the same manner, we have

I _ k I _ Sk
ijk = —bj,l and Cik = —dj,l-

LEMMA 3.2. Let u be a section of twistor space and J be the associ-
ated orthogonal almost complex structure. Then v is anti-holomorphic

if and only if ajfk = for all j,k,l and u is holomorphic section if and
only b, = 0 for all j,k, 1.
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First of all, we have to find the covariant derivative of u which is
1
Ju = 52(% ® €1éy - u,

where @ is the so(2m) connection 1-form (Levi-Civita connection with
respect to g) essociated with orthonormal basis {é1,. .., ém}. Let

1 -
Veu =3 Zajfk ®ep-ep-u mod (u).
k<l
The coefficient, a jlk can be derived as follows:
g-u=0 for all t.
By taking covariant derivative Ve,» We have
(Vsjgt) U+ Eg - Vs,»“ =0.
Hence
_ — 1_
(Vsﬁt) U= gy Z 5 aj,lk5l5k U
k<l
_ Loy
= - Z 5 aj’k EtEIEL " U
djfkel-u fork=t<l
—~jfk6k sy forl=t>k.
Since w; = —; - €j - u = 2u. Therefore we have
<v€jgt,€s> == a‘]; == d];
We get @, = (v, .€k,€1). By the analogous method, we can get
]’k €j

1
Ve, U = §ijfk ®e e, -u mod (u).
k<l

With this understood, it can be rephrased that w is anti-holomorphic
S F-V,u=0e a =0 & (V8 e) = 0 for all j,k,1. Also u is
holomorphic ¢ & - Vz,u =0 & a;f, =0 & (V. &, &) =0 for all j, k, L.

REMARK 3.3. From the torsion free condition of Levi-Civita connec-
tion, we have

l l - - — =
bj,k - bk,j = <v5j€k - v5k5j76l> = <[€j7€k}’€l>'
Since the anti-commutativity between upper index and right lower index

bjfk = —bj”f, we can get an equivalent condition which says that bjl,c -
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by, ! =0 if and only if bj . = 0. Hence it is easy to prove the Theorem
2. 6 from the above equation.

We want to find an equivalent condition for the harmonic two form
wie,Pw = (d + d*)w = 0, where d* is the formal adjoint of d with

respect to g. The following lemma is about it.

PROPOSITION 3.4. Let w = —m + >, wy be the purely imaginary
part of the Hermitian metric. ThenIDw = 0 if and only if a k = 0 and

bl + bk + b, =0 for all j,k,L.

Proof. Since w is purely imaginary two form, we have
Dw = Z €jVe,w +EjVe,w
J

= Zengjw - Zaﬂ'v%w
J J
= 2 Im D%w
It suffices to consider the half part of the Dirac operator, it reads
1
Prw = Z_‘Ej Ve W
J
= ) (5 (Ve,en) - Er+55 €k - Ve k)
7k

e 1 1 =
= Z(aj’k€j€l€fk + T iEi€iEk T b rEjekel + d; k€ iEkE)

Jikl
= Y (@hesEEr +bhesere) + D@k +d Y ejenE
§,kICIEk T U5 ke EREL Gl G,k /=5 kel
Gkl 3k,
S !
= Z(aj7k6jsl€k + bj,kgjskel)-
1,9,

Hence Pw = 0 if and only ile)%w =0< ajfk = 0 for all ¢,7,k and
Zba(]f;(?(k), where ¢ is the permutation of 4,7, k. The relation bj’l =

g
~bjf§ completes the proposition. O
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Proof of Theorem 2.10. Since (/u,u) = 0, we have
Du = > (5V.,u+&Ve,u)

J

1 ,_ 1
= Z(Zajfksjeksl “u+ ijfkejekel - u)

dokd

= E kep - u+ E 1(bl—l-b’°+19j)5~ U

= j,j€k " U 9 sk T 015 T D 1)€5EkEL " U
Jk J<k<l

Hence u is anti-holomorphic pure spinor (Etvej = 0 for all ¢,j) and
harmonic (Pu = 0) gives an equivalent condition for w being a sym-
plectic form. Note that given symplectic manifold (X,w) has such a
anti-holomorphic and harmonic twistor u by choosing any almost com-
plex structure which calibrate w. ol

COROLLARY 3.5. (dw)-u = 0 if and only if u is harmonic, i.e.,]pu = 0.
Proof. Let q = H;"zl wj = [];(1 +de; - Je;). Using the action q on ,
q - u = 2™y, and taking Dirac operator on the both side, we can have
Dg-u = D) -ut» &q-Vsu
= Pg-u < (Vw,u) =0=q Vgu=0)
= Du.
ThusPu = 0 if and only if (Pg)-u = 0. Moreover since (3i)m(——1)%p(p+1)
pwc = *p for ¢ € WP(X) and 1/k! * w* = 1/(m — k)lw™*, we have
Dqg = (d+d")q=idw+i2/2Wdw? + -+ 1/ (m — 1)ldw™ !
—i/(m = Dsdw™ 1 —32/(m =2 s dw™ 2 — .. — i s duw
= idw+i?/2dw? + -+ i (m - 1)ldw™
™l - we 4+ 12 /2dw?  we + -
+i™ 1/ (m — )ldw™ ™ - we.
Since wou = u,w - u = —(mi)u, we have dw* - u = k(dw) A WF 1y =
k(—mi)*1dw - u. Thus
Mq) - u=2i(1+m+m?/2!+ - +m™2/(m —2)))dw - u.
This completes the proof. O
REMARK 3.6. In dimension 2m < 6 every non-zero positive (or nega-
tive) spinor is pure, i.e., P,‘zSi = $é —0. This is simply because the group
Spin,,, acts transitively on the unit sphere in Sé in these dimensions.
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In dimension 4, since ¢ € Q3(X,R) acts on u injectively, we get
(dw) -u = 0 if and only if dw = 0. Hence the harmonic spinor u, equiva-
lently, anti-holomorphic twistor, gives a sufficient condition to induce a
symplectic structure. The next corollary follows from it.

COROLLARY 3.7. In dimension 4, Let u be a nowhere vanishing sec-
tion of positive complex spinor bundle. SupposePu =0 and (Vu,u) =
0, then X is symplectic 4-manifold.

Finally, suppose syu = 0. Then u is then both holomorphic and anti-
holomorphic twistor. We have following corollary, which is proposition
9.8 in [3].

COROLLARY 3.8. If u is parallel, then (X,g,J) becomes a Kahler
manifold. '
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