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NONDEGENERATE AFFINE
HOMOGENEOUS DOMAIN OVER A GRAPH

YUNCHERL CHOI

ABSTRACT. The affine homogeneous hypersurface in R**!, which
is a graph of a function F : R® — R with |det DdF| = 1, cor-
responds to a complete unimodular left symmetric algebra with a
nondegenerate Hessian type inner product. We will investigate the
condition for the domain over the homogeneous hypersurface to be
homogeneous through an extension of the complete unimodular left
symmet:-ic algebra, which is called the graph extension.

1. Introduction

An affine homogeneous domain € in R®*! is an open subset on which
a Lie subgroup of affine transformation group Aff(n+1) acts transitively.

J. L. Koszul and E. Vinberg studied the homogeneous domain 2
which is convex and proper, that is, {2 does not contain any full line
[12, 19]. Vinberg showed that there is a one-to-one correspondence
between the set of homogeneous proper convex domains and the set
of clans, the left symmetric algebras (abbreviated to LSA’s) whose left
multiplication operator has only real eigenvalues and which admit a Lie
algebra homororphism s into R such that the induced bilinear form
(x,y) := s(x -y) is positive definite. In a clan, there exists a principal
idempotent, from which he obtained the principal decomposition of the
clan. And this eventually leads to the structure theory of the clan.

The homogeneous Hessian domain, which admits a Riemannian Hes-
sian metric, was studied by Shima [18]. In fact, the homogeneous Hes-
sian domain turns out to be the convex domain which may contain a
full line, that is, need not be proper. For the non-convex homogeneous
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domain, H. Kim studied through the LSA which is obtained from the
simply transitive Lie group action [10]. The LSA structure represents a
left invariant, torsion free, flat affine structure on the Lie group.

In (13], A. Mizuhara studied the left symmetric algebra with a prin-
cipal idempotent. He shows that the LSA with a principal idempotent
gives a domain over the graph of a polynomial on R”. Here the notion
of principal idempotent is generalized from Vinberg’s, so the left mul-
tiplication operator of the principal idempotent can have another eigen
values besides % and 1. In this context, he called the domain over a
graph associated to the LSA of this type as the interior of the general-
1zed paraboloid. He also showed that certain interiors of the generalized
paraboloids have the constant sectional curvature —% with respect to
the nondegenerate metric induced from a Hessian type inner product on
the LSA.

In this paper, we will consider the graph domain  over the nondegen-
erate homogeneous hypersurface 3. = €1, where 3 is the graph of a func-
tion on R™, which admits a simply transitive action of a unimodular sub-
group A C Aff(n+1). We will study the Hessian structure of the graph
domain € R**! and the automorphism group Aut(2) C Aff(n + 1).
Then we will show that if a Lie subgroup G C Aut(Q2) acts simply tran-
sitively on {2, the associated LSA on the Lie algebra of G has an idem-
potent and it induces the decomposition of the LSA as in the case of the
clan. Conversely, for a complete unimodular LSA with a nondegenerate
Hessian type inner product, we will introduce the graph extension of the
LSA with a compatible derivation. Then we will show that the graph
extension gives the graph domain over the hypersurface which is deter-
mined by the complete unimodular LSA and the compatible derivation.
The following is the one of our main results:

THEOREM 4.11. Let ¥ be a graph of a function F : R" — R with
| det DdF| = 1, and let §) be the domain over the graph 3. Suppose a Lie
subgroup G C Aut(Q)g acts simply transitively on § as affine transfor-
mations and it contains an unimodular equiaffine subgroup A which acts
on ¥ simply transitively. Then the set of homogeneous domain (G, Q)
over ¥ is in one to one correspondence with the set of graph extensions
G of A, the complete unimodular LSA corresponding to (A, ). In this
case, there is a nondegenerate Hessian metric on €}, or equivalently, there
is a nondegenerate Hessian type inner product on G which is defined by
the trace form of the right multiplication operator.

Note that the interiors of generalized paraboloids in [13] are all the
homogeneous graph domain, or equivalently, the LSA with principal
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idempotent in [13] are all the graph extension of a complete unimodular
LSA with a Hessian type inner product. But the converse is not yet
clear to author. The deciding factor of converse argument could be the
eigen values of compatible derivation.

As an example, the graph domain over the paraboloid in R™*! is
isometric to the hyperbolic space H™! of sectional curvature —%, and it
is affine homogeneous. Moreover, from [13], many other graph domains
also have the constant negative sectional curvature with respect to the
semi-Riemannian Hessian metric and they are homogeneous. So it would
be interesting to ask which graph domains are homogeneous, and to
study the curvature property and the completeness of the graph domain.

The improper affine hypersphere was studied by many authors. With
some conditions, the hypersphere becomes homogeneous carrying sim-
ple transitive action of a unimodular Lie group. So the structure of
these hypersphere could be re-treated with the algebraic tools which
are introduced in our paper. Indeed, on the Cayley hypersurface the
abelian Lie group acts simply transitively, and in [3], the authors gave
an affirmative answer to the complete case of the Eastwood and Ezhov
conjecture about the Cayley hypersurface using the structure of the com-
plete abelian LSA. For another example, the hypersurface with parallel
difference tensor VK such that K"! # 0 which is given in [4] admits
a simply transitive action of a nilpotent unimodular Lie group, more
precisely, it is the graph of a polynomial associated to a non-abelian
filiform LSA.

Let us sketch the contents of the paper: In Section 2, we will in-
troduce some results about the homogeneous hypersurface from [3]. In
Section 3, we will study the Hessian structire and the automorphism
group of graph domain. In Section 4, we will study the associated LSA
structure of a Lie group which acts simply transitively on the graph
domain and the algebraic condition for the graph domain to be homo-
geneous. In Section 5, we will give a classification of graph extension
of low dimensional complete unimodular left symmetric algebras deter-
mining the corresponding affine homogeneous graph domains in these
dimensions.

2. Preliminary

Let ¥ be a graph of a function F : R" — R with |det DdF| = 1,
and let Q be the domain over X. In this case, the affine normals of
Y must be equal to £ = (0,...,0,1). By the affine transformation in
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R™ and by the parallel translation with respect to the last direction
in R™!, we may assume that F(0) = 0 and dFy = 0. Denote
Aut () (resp. Aut(E)) as the subgroup of all the affine transformation of
R™*! preserving Q(resp. T). Aut(f2)o(resp. Aut(X)o) means the identity
component of Aut(f2) (resp. Aut(X)). Then we have the following
results from [3]:

PrOPOSITION 2.1. ([3]) Aut(2) C Aut(X) and Aut(X)g = Aut(Q)o.

LEMMA 2.2. ([3]) The affine automorphism g € Aut({2)q is repre-
sented as the following:

(2.1) 9= ((f 2) , <F‘(’a))) € Afi(n + 1),

where A € GL(n,R), a,c € R", s = (det A)% € R, and ¢ denotes the
transpose of ¢ as a column vector.

Let’s denote ¢ : & — R™, ( F?a)) — a as a projection and by abusing
the notation, let’s denote ¢ : Aut(X) — Aff(n) given by

(2 ) ()) -0

as a group homomorphism. In the following, we will suppose that Aut(£2)
contains an unimodular subgroup A which acts on X simply transitively.
The image A = ¢(A) of the subgroup A by ¢ is an n dimensional subgroup
of Aff(n) and acts on R” simply transitively. The induced left invariant
flat affine connection on A will be denoted by V. Then it defines a
complete LSA structure on the unimodular Lie algebra @ = Lie A whose
product is given by a - b = V,b for a,b € a. In fact, since V is flat and
torsion free, we have

(2.2)  VaVie = ViVac = Vg ¢ = a(be) — blac) — [a,ble = 0,

(2.3) Vab — Via — [a,b] = ab - ba — [a,b] = 0,

and we obtain the left symmetry of the associator (a, b, ¢) = (ab)c—a(bc).
We will denote the LSA as A = (@,-) and the left multiplication by
a € A as A, so that A,(b) = ab. By identifying A with R™, X induces
a representation of @ into aff(n) = gl(n) + R"™ which maps a to (A, a).
Exponentiating this representation gives us the representation of A into
Aff(n) = GL(n) x R™ so that the group

A= {(expA,, € —1)|a € a} C Aff(n),
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1 1
where e*—1 = a+—'a2+§a3+- o and a® = (\)*¥7ta, (k=1,2,...), acts

on R" simply ‘transitively(see [10] for details). Generally, the developing
image of an LSA A at zg € R" means that the orbit A -z of the
corresponding Lie group A. Note that, since the developing image of
A is the whole space R", the induced LSA A must be complete. The
following theorem about the equivalent conditions of the completeness
is well known:

THEOREM 2.3. ([7, 16]) Let A be an LSA. Then the following state-
ments are equivalent:

(a) A is complete.
(b) trp, = 0 for all a € A, where p, is the right multiplication of a.
(c) det(I 4+ po) =1 for alla € A.

Note that in our case, since the associated Lie algebra a is unimodular,
tr A\ = trp, =0, for all a € A.

PROPOSITION 2.4. ([3]) Let A be an unimodular subgroup of Aut(£2)o
which acts on ¥ simply transitively. For any element g € A, there exists
a unique a € R™ such that g = g,, where g, is represented by

o=, ) o)

where M, € GL(n) is given by the equations: forbe A
M, =expX and a=¢€®—1¢eR"

Moreover (Mg, a) act on R™ as isometries with respect to the Hessian
metric DdF.

The Hessian DdF of the function F defines a left invariant metric on
A, and hence i induces an inner product H = DdFj on the Lie algebra
a. We will frequently identify A(A, resp.) and R"(TyR"™ = R", resp.)
via the evaluation map at O(its differential, resp.) in the following so
that the left invariant vector fields on A becomes a vector field on R™.

PrROPOSITION 2.5. ([3]) The induced inner product H on A is of
Hessian type, that is, H satisfies

(2.4) H(a,bc) — H(ab,c) = H(b,ac) — H(ba,c),
for all a,b,c € A.
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Ultimately, the homogeneous affine hypersurface, which is a graph
of a function F' : R* — R with |det DdF'| = 1 and whose automor-
phism group contains an unimodular simply transitive subgroup, gives
a complete LSA with the Hessian type inner product.

Conversely, let A be a complete unimodular LSA with a Hessian
type inner product H with |det H| = 1. (Abusing the notation, we
denote by H in this paper both the inner product and its associated
symmetric matrix with respect to the standard basis on R™.) Let @ be
the associated Lie algebra of A. Define a map ¢ : @ — aff(n + 1) by
P(a) = ((a)'\;{ 8) (g) ), where o is the transpose of a € a@. Then
1 is the Lie algebra homomorphism(see [3]). Since a = ¢(a) is a Lie
subalgebra of aff(n 4+ 1), we have a corresponding Lie subgroup A =
expa C Aff(n + 1) whose elements are given by

(25) - ’ ( S >)
. 2 s
QIH(I+‘/;—?+()\§!) _+_) 1 a/H(%+%—?+)

for a € a. Note that the orbit space of the Lie group A = {(e*s,e® — 1)
€ Aff(n) | a € A} at the origin is the whole space R™ because A is
complete. Put x = e®* — 1 € R™ and let’s define a function F : R* — R
by

a a2

(2.6) 'F(m):F(ea—l):a’H(a+§+-~-).

Then the homogeneous hypersurface & = {(z, F(z)) € R""! |z € R}
contains the origin of R**! since F(0) = F'(e®~1) = 0 and A acts simply
transitively on X. Differentiating (2.6)(see [3]), we have

DdF, = H,
DdF,(e?,e?) = DdF(e®—1)(e’e,eda)
DAF(0)(:,-) = DdFy(-, ).
Since det e*s = 1, we have det DdF, = det DdF, and hence | det DdFy|
= |det H| = 1 for all z € R™. Therefore the affine normals of the

hypersurface ¥ are equal to £ = (0,...,0,1), so they are parallel. Now
we can summarize as follows.

THEOREM 2.6. ([3]) There is a one-to-one correspondence between
the set of the graph ¥ of F : R® — R with |det DdF| = 1 on which
an unimodular Lie subgroup A of affine transformations acts simply
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transitively and the set of the complete unimodular LSA A with a non-
degenerate Hessian type inner product H, |det H| = 1 with respect to
the standard basis of R™ = A.

REMARK 2.7. On a graph of F : R” — R with |det DdF| = 1, non-
isomorphic unimodular Lie subgroups of affine transformations could
act simply transitively. In this case, the induced complete unimodular
LSA’s are not necessarily isomorphic. In section 5, we will give two
unimodular Lie subgroups acting on a parabola in R* simply transitively,
one is abelian and the other is non-abelian.

DEFINITION 2.8. Let £ be an n-dimensional LSA with a Hessian type
inner product {, ).

(a) An automorphism A of £ is called isometry if it satisfies
(Az, Ay) = (z,y) forallz,y e L.

The set of all isometries will be denoted by IAut(L).

(b) A derivation B of £ is called infinitesimal similarity if it satisfies
(Bx,y) + (z, By) = %tr B{z,y) forall z,y e L.

The set of all infinitesimal similarities will be denoted by sDer(L).
(¢) An infinitesimal similarity B of L is called compatible if tr B = g,

that is, it satisfies the following,

(Bz,y) + (z,By) = (z,y) forallz,ye L.
The set of all compatible derivations will be denoted by cDer(L).

3. Domain over the graph

Let 3 be a graph of a function F' : R® — R with |det DdF| = 1,
F(0) = 0 and dFy = 0, that is, ¥ is the nondegenerate hypersurface
such that the affine normals are £ = (0,...,0,1).

With the given function F : R™® — R, satisfying the above assump-
tions, we can define a function p(a, s) from R**! into R by

p(a,s) = s — F(a),

and let Q = {(a,s) € R""!| p(a,s) > 0}. Let’s denote by ¥; the t-level
surface p~1(¢) for all t € R;. Since p(a,s) > 0 for (a,s) € Q, we can
define a function ¢(a,s) on Q (cf. [8]) by :

(3.1) ¢(a,s) = —Inp(a,s)
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Differentiating (3.1), we have
do = ———( —dF,1) = (dF,—l)
p

1 deF+(dF)'(dF) —(dFy
D¢ = p? ( ~dF 1)
where (dF) is the transpose of dF as a row vector. Then we see that
1
|det Dd¢ | l det DdF | 1 —-> >0 on Q. This says:

PROPOSITION 3.1. ([8]) The Hessian Dd¢ of ¢ is a nondegenerate
metric on €.

Consider a canonical vector field E on {2 given by
(3.2) Dd¢(E, X) = d(X)
for all X € X(§), the space of the vector fields on Q. The vector field E
is the dual of d¢ with respect to the nondegenerate metric Dd¢ on €.
Using the matrix form of the inverse of Dd¢, which is given by,
(Ddg)~! = (DdF)~! (DdF)~Y(dF)
(dF)(DdF)™!  p+ (dF)(DdF)~(dF) )’
we can obtain a explicit form of the canonical vector field E on £

(3.3) E = (d¢)(Dd¢)“1 =(0,...,0,-p), ie., E= —pz,r%,

where E’ is the transpose of the vector field E. From this, we have the
following properties of the vector field E:

PRrROPOSITION 3.2. Let E be the canonical vector field on . Then,
(a) dg(E) =1.

(b) DxE =0 for all X € X(2) such that X|s, € X(Z;).

(c) DEE = —E.

Proof. (a) Using the matrix forms of d¢ and E, we have
1
d¢(E) = ;(dFa _1) ’ (O’ ooy 0y _p)l =1

(b) From (3.3), F is parallel on the level surface £; of p. So DxE =0
for all X € X(%,).
(c) From (3.3), we have
a0 | Op o 0
P(g—gj;r (_paxn‘H ) - p(axn—i-l ) Hypntl - parn+1

X

DpE =D_ =-F.

g
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Let 7 : Aut(Q2)p — R+ be the group homomorphism defined by the
following: With the matrix form (2.1) of g € Aut(2)o,

o= () o))+

PROPOSITION 3.3. For any x € Q and g € Aut(Q))g, we have:

(a) p(g-z) = 7(g9)p(z).
(b) d¢g'$ ‘g = dg.
(c) Ddd’g-w(g*', g+) = Ddy(-, ).

Proof. (a) With the matrix form of g and z = ( € Q, where

b
t+F(b))
b
p(r) =t € Ry and (F(b)) € ¥, we have

e Ab+a
I E=\b+st+sF(b)+ Fa))

so p(g-z) =c'b+ st+ sF(b) + F(a) — F(Ab+a). Since g € Aut(X) and
hence F(Ab+ a) = b+ sF(b) + F(a), p(g - ©) = st. Because 7(g) = s
and p(x) = t, we conclude that p(gz) = 7(g)p(z).

(b) and (c) follow from (a) by differentiating the following function
with respect to z, ¢(g-z) = —Inp(g-z) = —In7(9)p(z) = —In7(g) +
o(x). O

Above Proposition 3.3 says that d¢ and Dd¢ are Aut(Q)p-invariant.
COROLLARY 3.4. The canonical vector field E is Aut(2)o-invariant.
Proof. For any g € Aut(Q)p and X € X(Q),
Dd¢go(9.E,9:X) = Ddey(E, X) = d¢s(X) = dogz(9:X)
= Ddpg.(E, g X).
Since Dd¢ is rondegenerate, we have g, FE = F. O
Let A = ker 7 be the normal subgroup of Aut(Q)g, so the elements of

A are represented by
( A O a )
d 1)\ F(a)

with det A = 1. Then A leave invariant each level hypersurfaces ¥;’s for
all ¢ > 0. Furchermore, the elements of Aut({2)g preserving each level
surface must be contained in A. If Aut(£2)o acts transitively on Q, then
7 must be an epimorphism and A acts on (¢ > 0) transitively.
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Now, let G be a subgroup of Aut(2)p which acts on 2 simply tran-
sitively. Then A = AN G is a normal subgroup of G and it acts simply
transitively on X; for all ¢ > 0. Note that A is an unimodular subgroup
because A is a subgroup of A, that is, det A = 1 for all A € A. More-
over, g(A) acts on R” simply transitively. Since G leave ¥ invariant, G
is decomposed by G = A x J, where J is the isotropy subgroup at (0, 0).
In this case, 7|; must be an isomorphism onto R, because dimJ = 1.
In fact, any element j € J is represented as the following:

(A0
g=<0 S)EGL(n—l—l,R),

where A € GL(n,R) and s € R4, since j - (0,0) = (0,0) and j*dFp = 0.
The following theorem is the summary of this section.

THEOREM 3.5. For a nondegenerate hypersurface ¥ given by a func-
tion, F': R* — R with |det DdF| = 1, F(0) = 0 and dFy = 0, let Q be
the domain over ¥. Suppose that Aut(Q2)o contains a subgroup G which
acts simply transitively on Q. Then we have the following:

(a) Dd¢ is a nondegenerate metric on ), where ¢(a,s) = —In(s —
F(a)) is a function from §2 to R.
(b) There exist a canonical vector field E € X(Q)) satisfying

Ddp(E, X) = dp(X)  forall X € X(Q).

Moreover, d¢, Dd¢ and E are all Aut(Q2)p-invariant.

(c) There is a Lie group homomorphism 7 : G — Ry such that
ker 7 is equal to the normal subgroup A which acts on ¥ simply
transitively. In this case, A is unimodular.

(d) There exists a 1-dimensional Lie subgroup J, which is the isotropy
subgroup at (0,0), such that G = A x J.

4. LSA structure of the graph domain

Let’s denote the evaluation map ev : G — Q with ev(g) = ¢ - ept1,
where e,11 = (0,...,0,1) € @ C R™!. Since the action of G on  is
simply transitive, the evaluation map is a diffeomorphism, so it induces
a left invariant affine connection D(= ev* D) on G from the standard
affine connection on  which is torsion free and flat. Let g = LieG be
the set of left invariant vector fields on G, so ev,(g) C X(Q) is the set
of G-invariant vector fields on Q. The left invariant affine connection
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gives a LSA structure on g by -y = D,y for any z,y € g, which is
compatible with the Lie structure, that is,
(4.1) T-y—y- -z =[x,y for all z,y € g.

For the caronical vector field E € X(f2), we can choose e € g such
that

evi(e)=—FE

since E is G-invariant from Corollary 3.4. Let j = LieJ be the Lie
subalgebra of g.

PROPOSITION 4.1. The element e is an idempotent and it belongs to
j, so j = span{e} is a subalgebra of (g, -).

Proof. From Proposition 3.2 (c¢) and the map ev,,

evi(e-e) = evi(Dee) = Dy, ()evs(e) = D_g(—E)
= —FE = evy(e),

so we have e - e = e. Since ev(J) = {(0,...,0,s) € Q| s > 0}, we have
that evi(j)le,s, = {(0,...,0,¢) € R*™ | ¢ € R}. But evi(e)e,,, =
—FEle,,, = (C,...,0,1) € evi(j)|e,,,- DBecause everything is all G-
invariant, we have that j = {te |t € R}. O

The idempotent e in Proposition 4.1 is called a principal idempotent

of g. Let a be the Lie algebra of the unimodular subgroup A of G. Since
A is a normal subgroup, a is a Lie ideal of g. Then we have:

PROPOSITION 4.2. (a) The Lie ideal a is equal to the kernel of the
right multiplication of e, p., that is,

a={a € g|pela) = ae =0}
(b) The left multiplication of e, )., leave invariant the Lie ideal a.

Proof. (a) For any a € a and t € Ry, ev.(a)|s, € X(Z;) because A
leave invariant ;. Then from Proposition 3.2 (b),

evi(a-e) =evi(Dge) = Dey, o —E) = 0.

Since the map ev, is one-to-one, we have that a-e = 0, that is, a C ker pe.
By dimension argument, they must be equal.

(b) From (a) and (4.1), [e,a] = ea — ae = ea for all a € a. Then,
since a is a Lie ideal, Aea = [e,a] C a. O

From the Lie group homomorphism 7 : G — R, we obtain a 1-form
dr : g — R, which is a Lie algebra homomorphism(cf. [19]). On the
other hand, we have an induced 1-form ev* d¢ on g, where ¢ = —Inp is
the function on Q given by (3.1).
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LEMMA 4.3. For two 1-forms on g given in the above, we have
dr = —ev* do.

Proof. Recall that ¢(en41) = —Inp(ent1) = —In(1 — F(0)) = 0 and

hence ¢(g - ent1) = —Inp(g - ent1) = —In7(g)p(ens1) = —In7(g) for
any g € G, where e,y1 = (0,...,0,1). This says that ¢oev = —InT as
a function from G to R. By differentiating the functions at the identity
d of G,

dr
dle, s d(ev)ly = —d(InT)lg = ——Iy-
Since 7(id) = 1, we have dd|e,,,d(ev)|yg = —d7ly- O

Using this Lemma and Proposition 3.2 (b), we have
dr(e) = —ev* dg(e) = —dp(—F) = 1.

From the Hessian metric Dd¢ on 2, an inner product {, )) on g could
be induced as the following:

{(z, y) = Ddg(evi(z),ev4(y)), .,y €9
With this inner product, the length of principal idempotent is 1, that is,
(4.2) (e, e)) = Ddg(ev.(e),evi(e)) = Ddp(—E,—E) = dp(E) = 1
by using Proposition 3.2 (a).

PROPOSITION 4.4. The induced inner product {(, )) is related with
the 1-form dr as follows.

(a) {e,z) =dr(z) for all x € g.

(b) «-’E,y» = dT(CB : y) for all T,y €8

Proof. (a) Using Lemma 4.3 and (3.2), we have, for any z € g,

{e,z) = —Ddp(E,ev.(z)) = —dg(ev«(z)) = —ev* dé(z) = dr(z).
(b) For any G-invariant vector fields X = ev.(z) and Y = ev.(y),
Ddg(X,Y) = (Dxdd)(Y) = X(d§(¥)) - dp(DxY) = —dp(DxY),

since d¢(Y') is a G-invariant function, i.e., it is constant on £2. On the
other hand, ev.(z - y) = ev.(Dzy) = DxY. Hence we have

(z,y) = Ddp(X,Y)=—d¢(DxY) = —dd(ev.(z -y)
—evidg(z-y) = dr(z-y).
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Notice that the element e is uniquely determined as the dual of dr
with respect tc the inner product {(,)) on g from Proposition 4.4 (a).

COROLLARY 4.5. (a) The inner product {(,)) is of Hessian type.
(b) The Lie ideal a is perpendicular to the principal idempotent with
respect to the inner product {{, ).
(c) The Lie ideal a is equal to ker dr.
(d) For any element a,b € a, a-b— {(a,b)e € a.

Proof. (a) Since {(xy,z2)) = dr((zy)z) for any z,y,z € g and dr is
linear, the inner product((, ) satisfies (2.4).

(b) For all ¢ € a, {a,€)) = dr(ae) = 0 from Proposition 4.2 (b).

(c) For all a € a, dr(a) = {(e,a) = 0 from Proposition 4.2 (a). So
a C kerdr. Since they are the subspaces of codimension 1, they must
be equal.

(d) For any a,b € a, dr(a-b— {a,b)e) = {a,b)) — {a,b)dr(e) = 0.
Therefor from (c), a - b— {(a,b)e € a. O

Let’s denote the restriction of the inner product {, )) to a by (,). Note
that (,) is nondegenerate from Corollary 4.5 (b) and (4.2). Moreover,

b
forz = (Z) and y = (t)’ we have

{(z,y)) = (a,b) + (s, 2) = (a,b) + st.
By using Corcllary 4.5 (d), we can define a multiplication * on a as
follows: for any a,b € a

(4.3) axb=a-b— {(a,be.
LEMMA 4.6. The algebra (a,*) is an LSA with a Hessian type inner
product (,).
Proof. For any a,b,c € a, we have from (4.3)
(axb)xc = (a-b—{a,b)e)-c—{a-b—(a,b)e, c)
= (a-b)-c—{(a,b)e-c+ {a-b, c)e,

ax(bxc) = a-(b-c—(bce)—{(a, b-c— (bcle)e
= a-(b-c)+ {a,b-c)e.
Then the associator (a * b) * ¢ — a* (b* ¢) is left symmetric since (a - b) -
c—a-(b-c) is left symmetric, the inner product (, )) is Hessian type, and
(,) is symmetric. Hence (a,*) is an LSA. By using (4.3) and Corollary
4.5 (b), (a*b,c) = {a-b,c) — ((a,b)e,c)) = {a-b,c)). Therefore (,) is
also Hessian type. O
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PROPOSITION 4.7. The restricted left multiplication A.|q of e is the
compatible derivation on (a,*) with respect to the inner product (,).

Proof. For any a,b € q,
e-(a-b) = (e-a)-b+a-(e-b)—(a-e)-b

= (e-a)-b+a-(e-b)
= (e-a)xb+{e-a,ble+ax(e-b)+ (a,e-be,

and e - (a-b) =e- (a*b)+ {(a,b)e. Then from Proposition 4.2 (b),

(4.4) e-(axb) = (e-a)xb+ax(e-b),

(4.5) {(a,b) = (e-a,b)+ (a,e-b).

The equation (4.4) says that A.|q acts on (a,x) as derivation and the

equation (4.5) says that A.|q is compatible with respect to the inner
product (,) on a. O

As a result, the LSA (g, -) can be split into the sum of a unimodular
Lie ideal a and a 1-dimensional Lie subalgebra j,

(4.6) g=a+j

in such a way that \¢|q belongs to the space cDer(a, x)(see Definition
2.8). The decomposition (4.6) is called the principal decomposition of
the LSA (g, -).

Conversely, let A = (a,*) be a complete LSA with a nondegenerate
Hessian type inner product (,) = H with |det H| = 1, where a is the
unimodular Lie algebra. Note that from (2.4), H satisfies

(4.7) [a,b)H = aH)y — b H)yg,
for all @ and b € A as column vectors.

PROPOSITION 4.8. Let G = A + J be a vector space direct sum of
the complete unimodular LSA A and 1-dimensional vector space § =
span{e}. Define a multiplication - on G : for a,b € A,

a-b=axb+ (a,be,
ere=e

4.8 ’

(48) a-e=20,
€-a=Aa €A,

where (, ) = H is a Hessian type inner product on A. Then § is an LSA
if and only if the left multiplication operator of e, A, acts on the LSA
(A, *) as a compatible derivation with respect to ().
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Proof. Let § = A+ be an algebra with (4.8), then the left multipli-
cation operators are given as following

A, O B 0
)\“:<a’;f 0)’ )\e:(O 1)’

where ), is the left multiplication operator on (A,*) by a € A and
B is the restriction of A\¢ on A. Recall G is an LSA if and only if

Y — S\a*b-b*a+st—tBa 0
EX7 (axb—bxa+sBb—tBa)H 0)’

D Ay = Aab — ApAg +tA B — sApeB + sBA, —tBA; 0
DTN\ HN —VHA +td/HB — s HB+ st/H —td'H 0)°

So, the LSA condition of G is equivalent to the following equations

Aaxb-brats Bb-tBa _ _ _

= AgAp—NpAgFtA B—s\pyB+sBA,—tB\,
(axb—bxa+sBb—tBa)H

= ad'H)\—bHN, +td’HB — st HB + sb'H — ta'H.

(4.9)

By using the left symmetric condition on (A, x) and the equation (4.7),
the equations in (4.9) are reduced to
AsBb—tBa = tAaB —s\B+sBX, —tB),
(sBb—tBa))H = td’'HB—st'HB+ sb'H —td' H.
Hence we have
(4.10) ABa = —AeB + Blq,
(4.11) BH= _HB+H
for all @ € A. The equation (4.10) means that B(= A.|4) is a derivation

of (A, x) and the equation (4.11) says that B is compatible with respect
to the Hessian type inner product. [

Above Proposition says that the LSA G is the extension of a complete
unimodular LSA A by an 1-dimensional LSA J = span{e}, so we obtain
a short exact sequence

(4.12) 0-A—-G—-7—0.

DEFINITION 4.9. In (4.12), G will be called a graph extension of A,
where the multiplication is given in (4.8) and A € cDer(A).
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Let’s identify the LSA G and R, where the LSA A is identified to
a subspace R® C R™! and the element e € J corresponds to ep41 =
(0,...,0,1). Denote the right multiplication operator of z € (G, -) (resp.
a € (A, *)) by pg (resp. pg). Then we have:

LEMMA 4.10. With the notation in Proposition 4.8, for x = <a) €
: s

R"(= G), the right multiplication operator is given by

_{ Pa Ba
Pz = (CLIH s ) .

Moreover, we have the followings:

(a) trp; =s and hence trpzy = o' Hb+ st defines a nondegenerate
Hessian type inner product on G.
(b) det(I + py) = —a’H(I + p,) " 'Ba + s+ 1.

b
t) € R™! we have,

_ Ay + tBa _ (Psb+tBa\ [ po Ba) (b
PeY = \WHa+st) ~ \aHb+st) ~ \dH s t)°
Pa
dH

(a) Since (A, *) is complete LSA, we have trj, = 0 for all a € A.
Then we have trp, = s and trpgy = o' Hb + st. Because H is nonde-
generate, tr p is nondegenerate, and it must be of Hessian type from the
left symmetric condition of multiplication.

(b) From the completeness of (A, x), det(I + p,) = 1 for all @ € A.
So we have

Proof. Since pzy =y -2 = Ayx for any y = (

Therefore p, = ( Bsa> and trp, = trp, + s.

det(l + pg) = det <I;}§a s]ia1)
= det (T Pa Ba
- 0 —adH{I+p,) 'Ba+s+1

= det(I + pa) - (—a'H(I + pg) *Ba+s+1)
= —dH(I+p,) 'Ba+s+1.
O
From the above Lemma, the developing image Q of the LSA § is the

domain containing the origin of R™*! and bounded by the hypersurface
defined by s = a’H(I + p,) "1 Ba — 1. Moreover the induced metric on
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from the Hessian type inner product ({,)) := tr p is nondegenerate. Put
a function F : R®™ — R by

(4.13) F(a)=d'H(I + p,) ' Ba.

Then we have F'(0) = 0. Since (A, *) is complete, the right multiplication
Pq 1s nilpotent, that is, pi = 0 for all a € A. So

(I+pa) " =1=pat it 4

is a finite sum and hence the function F'(a) must be a polynomial, whose
degree is less than n + 1. Differentiating (4.13), for v € R™

dF,(v) = vH({I+p,) 'Ba
~a'H(py — (Papy + PvPa) + -+ ) Ba
+a'H(I + p,) "' Bu.

From this, dF) = 0 and DdFy = B'H + HB = H. Let G(resp. A) be
the Lie subgroup of Aff(n + 1) obtained from G(resp. A), then G acts
simply transitively on ), the domain over the hypersurface ¥ which is
the graph of tre function s = F(a)—1. Since A is a complete unimodular
LSA, A must be unimodular and equiaffine. So we have |det DdF| =
|det Hl = 1 # 0 because A acts on ¥ transitively. Therefore Q is
the graph domain, translated by (0,...,0,—1) from the domain, which
we considered at first, over the nondegenerate hypersurface, where a
unimodular equiaffine Lie subgroup acts simply transitively.

THEOREM 4.11. Let ¥ be a graph of a function F' : R® — R with
| det DdF| = 1, and let §? be the domain over the graph ¥.. Suppose a Lie
subgroup G C Aut(Q)g acts simply transitively on Q as affine transfor-
mations and it contains an unimodular equiaffine subgroup A which acts
on Y simply transitively. Then the set of homogeneous domain (G, Q)
over X is in ore to one correspondence with the set of graph extensions
G of A, the complete unimodular LSA corresponding to (A, ). In this
case, there is a nondegenerate Hessian metric on §Q, or equivalently, there
is a nondegenerate Hessian type inner product on G which is defined by
the trace form of the right multiplication operator.

REMARK 4.12. If non-isomorphic Lie subgroups G and G’ of Aut(£2)g
C Aff(n+ 1) act on a domain 2 simply transitively, they yield the non-
isomorphic LSA’s G and §'.
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5. Classification of low dimensional graph extension

Before the calculation, we will investigate the automorphism group
of the graph extension since two isomorphic graph extension give the
affinely equivalent domain over the graph and the affinely equivalent
group action on the domain. Let (A, *) be a complete unimodular LSA
with a Hessian type inner product (,) = H, where |det H| = 1, and let
(9, ) be a graph extension of A. Let’s denote A¢|4 = B the compatible
derivation on A.

PROPOSITION 5.1. The LSA automorphism A of § is represented as

- (A0
=6 %)

where A is an element of IAut(A) satisfying AB = BA. ( see section 2
for the definition of TAut(A))

Proof. From the Lemma 4.10, A = ker tr p. Since
trpg, =tr flpri_l = tr pg

for all z € G, the LSA automorphism A leaves invariant the subspace A.
Therefore A is represented as the following (n + 1) x (n + 1) matrix

o A ﬂ
i=(0 %)

where A is a n X n matrix, # is a vector in R™ and ¢ is a real number.
From A(e-a) = A(e) - A(a),

ABa\ (f Aa\ (B Aa+tBAa
0 o\ 0/ (B, Aa) '
Then (8, Aa) = 0 for all @ € A. Because the matrix A and the inner
product (,) are nondegenerate, 3 must be 0, so we have

(5.1) AB = tBA.

< 0
Since é := A(e) = (t) is an idempotent, we have t? = t. Because of

the nondegeneracy of A, t must be equal to 1 and hence (5.1) becomes
AB = BA.
Now from A(a - b) = A(a)A(b) for a,b € A, we obtain

(i) - ()
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thus

(5.2) A(a *b) = (Aa) * (Ab), (Aa, Ab) = (a,b).

The equations in (5.2) says that A is an isometric LSA automorphism
of A, that is, A € TAut(A). d

Above Proposition says that, on a complete unimodular LSA equipp-
ed with nondegenerate Hessian type inner product H and the compatible
derivation B, she graph extension is determined by the isometric auto-
morphism class commuting with B. By the similar argument in the proof
of Proposition 5.1, for another compatible derivation B, G(A, *, H, B)
and G(A, %, H, B) are isomorphic if and only if there exists A € TAut(A)
such that B = A"'BA. This says that

{isomorphic class of G(A, *, H)} = cDer(A)/~,

dim A
2

where cDer(A) = {B € sDer(A)| tr B = } and ~ is the conjugate
action by IAut(A).

In the following three subsections, we calculate the Hessian type inner
product and the compatible derivation of the non-isomorphic complete
unimodular LSA’s which are derived from the classification of low di-
mensional LSA in [1, 11]. Then these data will give the classification of
graph extensions and, from the (4.13) we can obtain the associated poly-
nomials which are the boundary of the domains, the developing images
of the graph extensions.

5.1. dimA =1

Let A be an 1-dimensional complete unimodular LSA, then A must
be a trivial algebra, that is, A = span{e;} with e; xe; = 0. Let G be a
graph extension of A with the multiplication

e1-e1 = (e1,er)e

e-e=e

e1-e=0

e - e; = sep for some 5 € R.
From the nondegeneracy of (,) and the compatibility condition (4.11),
we have s = 3 By normalising, put {e1,e;) = 1. Then

9 = span{61,62 =€ ’ €] €1 = ﬂ:eg, €y -€1 = —2-61, €2 €9 = 62}
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and hence G is the LSA on the domain lying over the graph of
19

F(a) = :I:ia .

5.2. dimA =2

Let A be a 2-dimensional complete unimodular LSA, then A must be
one of the following up to isomorphism from [1]

Aq1 = span{ei, ez}, that is, A, is trivial.

Ag2 =span{er, ez | ere; = ea}.

In the following table, we give the Hessian type inner product H
representing the isometric class, the compatible derivation B, and the
associated polynomial F' of each LSA: for a = aje; + azes € A

L | 2 [ B | Flua) |

+1 0 1y

a0 (5 2) (L, ") e +a)
1 0 1

Aa1 (1,1) b 2 7%) | L(a?—-ad)
0 —1 bio

0 1 19
e JED ] (9 [omsm

The graph extensions of each LSA are determined by H and B
from Proposition 4.8. In fact, for the basis of the graph extension G,
{e1,e2,e3 = e}, H and * determine e; - e1, €1 - €3, €3- €1, €2 - ez, and B
determines e3 - €1, e3 - e2. The following table shows that presentations
of each graph extension:

Sa1 (2,0) ege3 = €3, ere] = tez = egey,
—1 — 1
ese; = 5e1 — bigeg, egez = biger + 5e2

Ga1 (1,1) €3€3 1= €3, €1€1 = €3, €263 = —63;
ezer = €1 + bizez, ezez = bizer + 5e2

G €3€3 = €3, €1€]1 = €32, €1€2 = €3 = €3€1,
a2

1 2
€3€1 = 3€1, €3€2 = 3€2

Note that, in the case of the graph extension Gg1(both G,1(2,0) and
Ga1(1,1)), non-isomorphic classes give the same homogeneous graph do-
main. It says that the non-isomorphic Lie subgroups act on the domain
simultaneously. So we guess the dimension of the automorphism group
of the domain. The above table shows that dim Aut(£2(G41)) = 4 and
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dim Aut(£2(Ga2)) = 3. On the other hand, the above classification of
the graph extension of complete unimodular LSA is exactly same as the
classification of 3-dimensional incomplete simple LSA’s [11].

5.3. dimA =3

Let A be a 3-dimensional complete unimodular LSA, then A must be
one of the following up to isomorphism from [11] : two simple and nine
non-simple LSA’s,

A = Span{€1,€2,€3 | €1ex = —e€3, €163 = €3, €262 = €1, €3€3 = 61},

Asz = span{ey, ez, e3 | eres = —ey, e1e3 = e3, eze3 = €1, ezez = €1},

Anl = span{el, €2, €3 ‘ €g€e3 = €1, €36y = (1 - t)el, €3€3 = (1 + t)ez},

An2 = span{es, ez, €3 | eseg = e1, eze3 = ez},

Ang = span{ei, ez, e3 | eze; = —ea, eze2 =1},

Apg = spanfer, ez, €3 | ezeg = e},

Ans = span{ey, ez, e3 | esez = €1},

Ang = span{ei, ez, e3 | eze3 = e1, eze3 = e1},

Anz = span{ey, ez, e3 | eze3 = tey, ezea = (t — 1)ey},

Ang = span{ei, ez, e3 | egea = €1, ezeq = —ey, esesz = te1},

Ang = span{ey, eg,e3}, that is, A is trivial LSA.

By calculating the equation (2.4) on each LSA above, we can see
that the LSA’s Aq1, As2, Aps, Ang, An7(t # —1,2) and A,s do not admit
any nondegenerate Hessian type inner product. The LSA A,3 admits
nondegenerate Hessian type inner products, but all the derivation of A3
is degenerate as the following:

hi1 0 0 bir b2 O
H=[0 hy o), B=[—by by 0
0 0 hss 0 0 0

Applying the compatibility condition (4.11), the Hessian type inner

products H on the LSA A,3 become degenerate. This says that the

LSA A3 does not permit a nondegenerate graph extension, though the

Lie group of the associated Lie algebra of A3 acts simply transitively

on a nondegenerate hypersurface. In fact, using the equation (2.6) and
100

H=\|0 1 O) , we could see that the nondegenerate hypersurface ob-
0 01

/

tained from the LSA A,3 is the 3-dimensional paraboloid, that is, the
1
graph of the function F'(ai,az,a3) = E(a% + a3 + a?). Hence the Lie

group Ay3 obtained from the LSA A,3 acts simply transitively on the
paraboloid. But there does not exist any simply transitive affine group
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acting on the domain over the paraboloid, which contain this Lie group
An3z. On the paraboloid, we know, the abelian Lie group obtained from
the trivial LSA also acts simply transitively. This gives the example
mentioned in Remark 2.7.

The following table shows the compatible H’s and B’s which will give
a nondegenerate graph extension, and the equation of the nondegenerate
hypersurfaces which will give the graph domains : for a = aje; + ages +
ases € A,

[ i H | B | F(a1,02,a3) ]
A 0 01 200
¢ ;én_ll 0 1 0 0 % (1) a1a3—a2a§+%a§+ (lf)aé
100 0o 0 1
3
Ani 0 01 4 (1) 0 2412
—-_1 0 +1 0 0 3 (3 aiasz — azas + 5(22
1 0 0 0 0 1
0 0 1 3 b2 O
Anz 0 -1 0 0 3 b a1as — 303
1 0 0 0 0 3
01 0 2 0 0
1 1.3 1.2
An4 ]. 0 0 0 3 0 ajag — 3(12 + 50,3
0 0 =1 0 bs2 1
4 0 0 1 S0 0
:"_71 0 +1 0 0 3 0 aias + aza3 + 1a3
0 0 0 0 1
4 01 0 200
t:"; 10 0 0 1 0 a1as — a3as + 1a3
0 0 %1 0 0 %
Ao 1 0 0 3 b2 bis
(3710) 0 1 O ~bi2 % bas :t% (a? + a% + a§)
’ 0 0 =1 —bis  —ba 2
Ao 1 0 0 1 bz bis
(2711) 0 +1 0 —b12 % bas :i:%(a% + a% — a%)
’ 0 0 ?1 b13 b23 %

Note that the maximal degree of the polynomial occurs only on the
LSA Api(t # —1). In this case, if we put ¢t = 0, then the LSA is abelian
filiform, so the associated hypersurface is the 3-dimensional Cayley hy-

1
persurface [3]. Moreover, if we put ¢t = -3 then the hypersurface is
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equal to the example in [4], on which the difference tensor K satisfies
1
VK =0, K? £ 0. In fact, if VK = 0, the ¢t must be equal to ~3 In

this case, the LSA A1 (t = %) is non-abelian filiform.

For the LSA A2, the degree of the associated polynomial is 2. In
this case, the difference tensor K = 0, equivalently, the cubic form
C vanishes identically (cf. [14]). Note that, for an abelian LSA, the
associated polynomial is quadratic if and only if the LSA is trivial (cf.

[3])-

REMARK 5.2. From the low dimensional classification of graph ex-
tension, it seems that the graph extension does not have any ideal.
Moreover, frora [11], 2-dimensional and 3-dimensional incomplete simple
LSA’s are all the nondegenerate graph extension of a complete unimod-
ular LSA. Therefore it would be interesting to ask whether the nonde-
generate graph extension is the incomplete simple LSA.

Low dimensional homogeneous hypersurface was classified using pre-
ferred normal form in [5, 6]. By comparing their results with ours,
we guess that which homogeneous hypersurface does not admit simply
transitive unimodular Lie group action or which graph domain does not
admit simply transitive Lie group action. Furthermore, some homoge-
neous hypersurfaces in [5, 6] may be associated to the graph extensions
of incomplete or degenerate unimodular LSA’s.
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