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STRONG LAWS OF LARGE NUMBERS
FOR WEIGHTED SUMS OF NEGATIVELY
DEPENDENT RANDOM VARIABLES

Mi-HwaA Ko, KwANG-HEE HAN, AND TAE-SUNG KiM

ABSTRACT. For double arrays of constants {an:, 1 <4 < kn, n >
1} and sequences of negatively orthant dependent random variables
{Xn, n > 1}, the conditions for strong law of large number of
Ek"l an:X; are given. Both cases k. T 0o and k,, = oo are treated.

i=

1. Introduction

The history and literature on strong laws of large numbers is vast
and rich as this concept is crucial in probability and statistical the-
ory. The literasure on concepts of negative dependence is much more
limited but still very interesting ([3], [4] and [7]). Negative dependence
has been particularly useful in obtaining strong laws of large numbers
(cf. [1], [5], [6], [8] and [10]).

Lehmann [6] provided the concept of negative dependence in the bi-
variate case as follows:

Random variables X and Y are negatively quadrant dependent(NQD)
if
(1) P{X <z,Y <y} < P{X <z}P{Y <y}

for all z,y € R. A collection of random variables {X,,,n > 1} is said
to be pairwise NQD if every pair of random variables in the collection
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satisfies (1). It is important to note that (1) implies
2) P{X >z,Y >y} < P{X > 2}P{Y >y}

for all z,y € R. Moreover, it follows that (2) implies (1), and hence,
they are equivalent for pairwise NQD.

Ebrahimi and Ghosh [2] showed that (1) and (2) are not equivalent
for n > 3(i.e., (3) and (4) below are not equivalent). Consequently, the
following definition is needed to define sequences of negatively dependent
random variables:

The random variables X1, Xo,...,X,, are said to be

(a) lower negatively orthant dependent(LNOD) if for each n

(3) P{Xi;<zy,...,.Xp, <xp} < fIP{Xi <z}
for all z1,...,z, € R, -
(b) upper negatively orthant dependent(UNOD) if for each n
(4) P{X1>x1,...,Xn>xn}§ﬁP{Xi>aci}
for all z1,...,2n € R, -

(c) negatively orthant dependent (NOD) if both (3) and (4) hold.

This notion was introduced by Ebrahimi and Ghosh [2]. In this paper
we will give some results of almost sure convergence of weighted sums
of NOD sequences, which have not appeared before. In section 2 we
consider the case of triangular-type weight arrays and in section 3 we
consider the case of infinite double arrays.

We will use the following concept in this paper. Let {X,,n > 1}
be a sequence of random variables and let X be a nonnegative ran-
dom variable. If there exists a constant C(0 < C < o0) satisfying
sup,>1 P{|Xn| > t} < CP{X >t} for any ¢t > 0, then {X,,n > 1} is
said to be stochastically dominated by X (briefly {X,,n > 1} < X).

Throughout the remainder of this paper, C will stand for a constant
whose value may vary from line to line.

2. Triangular arrays

LEMMA 2.1. ([8]) If {Xn,n > 1} is a sequence of NOD random vari-
ables and { fn} is a sequence of Borel functions all of which are monotone
increasing (or all monotone decreasing), then { f,(Xy)} is a sequence of
NOD random variables.
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THEOREM 2.2. ([8]) Let {X;, 1 < i < n} be a sequence of nonnegative
random variables which are upper negatively orthant dependent. Then

(5) E(ITL, X;) <L E(XG).

THEOREM 2.3. Let 0 < r < 2. Assume that {X,,n > 1} is a sequence
of NOD randoin variables and stochastically dominated by a nonnegative
random variable X, i.e., X, < X. Let {an;,1 <i<kp <00, 1<k, 7T,
n > 1} be an array of constants and {d,,n > 1} a sequence of constants
such that 0 < d, 1T and d, = O(n%). If the following conditions are
satisfied:

(i) there exists a positive number p such that

(6) Zk;p < 00,
n=1
(7) (i) > P(X >dy) < oo,
n=1
(8) i) Jani] ds = O(——)
(i) max fani| ds = O3~
and

(iv) one of the following statements is satisfied
a)if1<r<2, % | EX,=0,

k
= 1
2 2—r
(9) ; a‘nz dz —O(logkn)
b) if0 < r <1,
kn
(10) S Janil d7 = o(1).
i=1
Then
kn
(11) > i Xi — 0 as.

i=1

Proof. In view of d, = O(n%), (7) yields EX" < oo. From (7)
and {X,} < X, X2, P{|X,| > dn} < o0, ie., P{|Xn| > dp,i.0.} =0
follows. In the following statement, without loss of generality we assume
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O > 0 n>1,1>1and EX" = 1. If ¢, = maxi<;<k, |ani|d;. Then ¢,

()If1§r§2 let

kn
S, —ZamX EX;) and S’ _Zam —EX;/),
i=1 1=1
where X; = (=d;) V (X; A d;) and X; = X; — X;. Obviously,
kn
Sn:Zam '—S —f-S
n=1

Now if g(x) = 272(e*~1—z), then g(z) is nonnegative and increasing
([9]). Fort > 0and 1 < < ky, noting that|X; — EX;| < 2d; and E| X —
EX;|" < 2"~ 1(2E|X;|") < C2", where C comes from sup,, P(|X,| > t) <
CP(X >t), we have
E exp{tani(X; — EX;)}
1+ E{expltani(X; — EX;)] — 1 — tani(X; — EX,)}

< 1+ aig(2tan) B{IX; — EXi[(2d:)° 7}
(12) < exp{4Ctia2;d> " g(2tqn)}.
From (12) and Theorem 2.2 , it follows that
kn
(13) E(e!5) < exp{4Ct2g(2tq,) Zamd2 1
i=1

For all € > 0, set t = (p + 1)e!log k. From (8) and (9), there exists a
positive constant K. such that

P(S, > )
e—EtEetS,n
exp{—(p + 1) log k,
+4C (p + 1)%e2g(K.)(log ky) Z a2, d>™")

(14) < exp{-plogkn.} = k..
From (6) and (13), it follows that

(15) limy oS, <0 as.
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Replacing X; by — X, we get

(16) My —oo(—S,) < 0. as.
Consequently, by (15) and (16)

(17) S, —0 as.

Now we will show that

(18) S, —0 as.

If there exists 0 < K < oo such that d,, < K, n > 1, then from (7) and
{X,n} < X, we have X < K as. for all n > 1. Replacing d,, by K we
get S;,’ =1{ a.s. and, of course, S;; — 0 a.s.

Now we assume that d, T co. On the other hand, from the condi-
tions about d, there exists a function d(z) on (0, 00) which is positive,
continuous, increasing, d(z)/z | and d(n) = dp. Set d~(z) = inf{y >
0,d(y) > z}. It is easy to know that d~(x)/z T on (0,00) and d~(X) is
integrable. Thus we have

C-i”— Xuldp < C—- / Xdp
n J{|Xn|2dn} {X>dn}

< c / X)dp = o(1).
X>dn}

So there exist a sequence of positive constant o(1) and C > 0 such that

ky, kn,
(Zam‘EX;/)Q < (Zaméidii_l)z

i=1

kn kn
< ) _ahdi Qi
i=1 i=1
(19) = o(l).
From (9), noting that d,, 7, there exists C' > 0 such that
kn kn 1
2 2 < 247 = .
(20) >k <O dudt™) = ol )

From (20), we obtain

kn, kn
@ Pewx) < Q) Q_ IXGIP1(X 2 dy)

i==1

From (19) and (21), S, — 0 a.s., i.e., (11) holds.
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(b)I0<r<1,let S, =% a,X; and S, = 3% a,; X, , where
X, = (=d) V (X; Ad;) and X, = X; — X;. Obviously, 37, a4, X; =
S + 8. Set gi(x) = 7 (e* — 1), then g;(z) is an increasing function.
Since E|X;|" < CEX"™ = C (where C comes from sup,, P(|Xy| > t) <
CP(|X| > t)), we have

Eexp(tanX;) < 1+ Ctanid; " g1(tgn)
< exp{Ctanid; "g1(tgn)}
and
kn
(22) Eexp(tS),) < exp{Ctg1(tqn) D _ anid} "}
i=1

by Theorem 2.2. Let t = (p + 1)e!log k,. It follows as earlier method
that

S;L —0 as.
On the other hand, via (10), there exists C' > 0 such that
kn kn

tri < C(D_amid] ™) = o(1).

i=1 i=1

Consequently,

kn

Sn2 = Izam'Xi |2
i=1
kn kn
< Qa2 IXPI(Xi| 2 di)) = 0 as.

i=1 i=1

So (11) holds. The proof is complete. 0

According to next theorem a slight strengthening of (8) permits a
weakening of (9):

THEOREM 2.4. Let {X,,n > 1} be a sequence of NOD random vari-
ables and stochastically dominated by a nonnegative random variable
X, ie, X, < X, and let {an;, 1 <i< ky, <00, 1 <k,?T, n>1} be an
array of constants. If E|X|" < 00, 1 <r <2, EX =0 and (6) holds,
then

1
T

(23) max an| = O(kn ™ (logk,) ™)

implies (11).
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Proof. Choosing d; =i and letting
X! = (=ir) V(X Adr) and X! = X; — X,

the proof follews the same pattern as that of Theorem 2.3 noting
that (23)

kn
; < k o (logk )2
i=1
g
REMARK. If Zf;l azn-i%—l O(logk ), then (23) can be weakened to
1
pax |am}1r = O(log kn).
Moreover, if ZZ (et di = (m—), where d,, = O(n%) then (23) can

be weakened to (8).

LEMMA 2.5. Let {X,,,n > 1} be a sequence of NOD random variables
with EX, = 0, sup,, |X,| < C as. (0<C < ). If {an;,1 <i <k,
oo,n > 1} is a sequence of constants satisfying

1

(24) @) max. |ani| = O(H)’
(ii) there exists p > 0 such that
=1
(25) D <o
n=1 T
then
kn
Z aniX; — 0 a.s.
i=1

Proof. Assume ap; > 0. From the inequality e* < 142+ %mzem and
(24) it follows <hat, for all ¢t > 0

Eexp{taniX;} < 1+E{ t2a2 Xzexp(taleiI)}
2

t
exp{Caexp(C’E)}.

IA

By Theorem 2.2 we get
kn

Eexp{tZamX} < exp{C'—exp(C )}
i=1
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For all € > 0, set t = p(1%8ke k") Noticing that C —exp(C ~) is bounded,
it follows that

00 kn
ZP{Z am-Xi > 6}
n=1 =1

< — — —
< ngzl exp{—te + Ckn exp(C’kn )}

oo
< CZexp(—p log ky) < oo
n=1
Consequently, we have

kn
lim g an; X; <0 as.
1=

Replacing X; by —X;, we obtain

kn
nlnglOZanz( Xi) <0 as.

=1
So

kn

Tllirglo;aniXi =0 a.s.

1=

The proof is complete. O

THEOREM 2.6. Let {X, X,,n > 1} be a sequence of identically dis-
tributed NOD random variables with EX = 0 and {ani,1 < % < kn, T
oo,n > 1} an array of constants satisfying maxi <i<k, |ani| = O(F -). If
there exists a positive p such that Z —1 kp < o0, then Zl 1 amX —
0 a.s.

Proof. Assume a,; > 0 and let X; = (-M)\/(X; AM) and X, =
X; — X;. Then {X,; - EX;} satisfies the conditions in Lemma 2.5 and
thus

kn
(26) Zam(X; —EX;)—>0 as.
i=1
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On the other hand, since maxj<;<, |ani| = O(ﬁ)

kn
| Z ani(X; — EX;)|
i=1

kn

C
< = IX( X > M)+ CEIX[I(|X| > M).
i=1

ki, <

Since NOD sequence is pairwise NQD, we get
kn,
1
= SOIXI(X:]) > M) — EIX|I(1X| > M) as.
=1

by Theorem 1 in [8]. Noticing that E|X|I(|X| > M) — 0 as M — oo,
we obtain

kn
(27) Zam-(X;, - EX;/) — 0 as.
=1

From (26) and (27), 3% 4, X; — 0 as.

i=
Theorem 5 in [1] is a special case of the above theorem. O

COROLLARY 2.7. Suppose that {X, X,,,n > 1} is a sequence of iden-
tically distributed and independent random variables with EX = 0 and
{ani,1 < i < n,m > 1} is a triangular array of constants satisfying
maxi<i<n la,m' = O(%) Then Z?zl amXi — 0 a.s.

3. Infinite double arrays

LEMMA 3.1. Assume that {X,,n > 1} is a sequence of NOD random
variables with EX,, = 0 and | X,,| < d,, n>1 and {an;,i > 1,n > 1} is
an array of constants satisfying

1

logn

(28) s%p di|an;| = o ).

If one of the following conditions holds

1
logn

(29) (i) EX2<o0*<oo, n>1 and » a2 =o(—),

i=1

(30) (i) E|Xpl <a<oo, n>1 and > _l|ani| = o(1).

i1=1
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oo
(31) Sp=Y anX; >0 as.
i=1

1 are almost surely defined. From (28), there exist 0 < «, = o(1) such
that [am-Xi[ < diam- < %’n Z l,i Z 1.

If (i) holds, for all ¢ > 0, we can show similarly to the display (12)
that

Proof. Assume an; > 0. Obviously. £ ;2 an;| X;| < oo thus Sp,n >

Eexp{ta, X;} = 1+t2aiiEX2 (tam-Xi)
)}

Since {X, X,,n > 1} are NOD, by applying Fatou’s lemma we obtain

t
Eexp(t Zam ) < exp{o?tPg(- )Z a2},

logn

< exp{o mg(logn

Set

i=10ni = logn
1

t, = p;'logn, where p, = max(63,73 ), necessarily p, = o(1). For all
€ > 0 and enough large n, we have

[o 0]
P> aniXi > €}
i=1

From (29), there exists 0 < §,, = o(1) such that > ;>
1
2

t
< eXp{—tn6+02t2 IZ’Y;;)Z m}

elogn

= ep{- SR o)) < 5

e PO ani X > €} < o0, ie., limy, oo o aniX; <0 as..

In the same way we can show that limp_eo D io; ani(—X;) < 0 as..
Thus (31) holds.

If (ii) holds, for all ¢ > 0, we can show similarly to the display pre-
ceding (22) that

Eexp{tan; X;} = 1+ tanEX;91(tan:X;)
< exp{tamEngl(tamX )}
< exp{atg1 ) i}
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Consequently,
n
Eexp(t ; ani X;) < exp{atg:( Tog n) ; Qni }-

1
Set t,, = p;llogn with p, =72, then for all € > 0,
> 1
P{Z ani X; > 6} < ﬁ
i=1

From this, (31) holds too. O

THEOREM 3.2. Suppose that {X,,n > 1} is a sequence of NOD
random variables with EX,, = 0, X is a nonnegative random variable
such that {X,} < X and {an;,t > 1,n > 1} is an array constants
satisfying

(o]

- 1
39 2 _ d .1 _ ‘
(32) 2 g O(IOgn) an S;_lzlﬁflaml22 0(logn)
If for some € > 0,
(33) EX?(log* X)% [log™(log™ X)]27* < oo

then
o0
Z aniX; — 0 a.s.

i=1

Proof. Assume ap; > 0. Let X; = (—z%)\/(Xl/\z%) and X;I = Xi—X;,
then |X| ~ EX]| < 2i% and E(X,— EX,)? < EX,” < CEX? < co. From
Lemma 3.1,

e o]
(34) Zam(X;- ~EX;)—0 as.
i=1

From (33), E2XI(X > z%) = O( ), (i — 00). And so

S
ilogi(log log 1)1+2€

oQ
(35) ST EEXI(X > %) < oo,
=1

Obviously,

(36) S P(Xi| > i3) <03 P(X > i})
=1

i=1
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and
(37) P(X;| > i2,i.0.) = 0.
From(32), (35) and (37),

oo
D ani(X; — EX;)?
i=1
00

4(Zam > (XEI(1X| > §7)

=1

(38) +CE*XI(|X;] > i2) - 0 as.
From (34) and (38), >°2, @niX; — 0 as..

O

THEOREM 3.3. Suppose that {X,,n > 1} is a sequence of NOD
random variables with EX,, = 0, X is a nonnegative random variable
such that {X,} < X with EX < co and {ani, 1 > 1,n > 1} is an array

of constants satisfying

1
logn

(39) Z |an;| = o(1) and supzlam| = of ).

i=1

Then

e 0]
Zam'Xi — 0 a.s..

i=1

Proof. Assume an; > 0. Let X; = (—1) V (X; A4) and X;' =X, - X,.

From Lemma 3.1,
>0 /
(40) Z ani(X; — EX;) — 0 as.
i=1 :
Since EX < oo and {X,} < X, we have
(41) P{|X;| >4, i.0.} =0.
From (39) and (41), we obtain

oo oo o0
(42) 1Y aniX 1< am 3 IXGI(1Xi > 9) > 0 as.
=1 =1 i=1

’
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Again from (39), we get

xX o
1> anBEX]| < (supEIX[|) D ani
i=1 t

=1

C(EX) Zam = o(1).

i=1

Finally, we obtain ) ;o; @niX; — 0 a.s. from (40), (42) and (43). 0O

(43)

IA
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