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ON THE SCALAR AND DUAL FORMULATIONS
OF THE CURVATURE THEORY OF LINE
TRAJECTORIES IN THE LORENTZIAN SPACE

NiHAT AYYILDIZ AND AHMET YUCESAN

ABSTRACT. This paper develops in detail the differential geometry
of rulec surfaces from two perspectives, and presents the under-
lying relations which unite them. Both scalar and dual curvature
functions which define the shape of a ruled surface are derived.
Explicit formulas are presented for the computation of these func-
tions in both formulations of the differential geometry of ruled sur-
faces. Also presented is a detailed analysis of the ruled surface which
characterizes the shape of a general ruled surface in the same way
that osculating circle characterizes locally the shape of a non-null
Lorentzian curve.

1. Introduction

Dual numbers were introduced by W. K. Clifford (1849 —79) as a tool
for his geometrical investigations. After him E. Study used dual numbers
and dual vectors in his research on the geometry of lines and kinematics.
He devoted special attention to the representation of directed lines by
dual unit vectors and defined the mapping that is known by his name.
There exist or.e-to-one correspondence between the vectors of dual unit
sphere S? and the directed lines of space of lines R3 [3].

If we take the Minkowski 3-space R} instead of R3 the E. Study
mapping can be stated as follows: The dual timelike and spacelike unit
vectors of duel hyperbolic and Lorentzian unit spheres HZ and S? at
the dual Lorentzian space D3 are in one-to-one correspondence with the
directed timel’ke and spacelike lines of the space of Lorentzian lines R3,
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respectively [8, 10]. Then a differentiable curve on HZ corresponds to
a timelike ruled surface at R}. Similarly the timelike (resp. spacelike)
curve on S? corresponds to any spacelike (resp. timelike) ruled surface
at R3.

The curvature theory of line trajectories seeks to characterize the
shape of the trajectory ruled surface and relate it to the motion of body
carrying the line that generates it.

Since a ruled surface is a special case of a smooth surface, its differ-
ential geometry can be developed using traditional techniques of vector
calculus. McCarthy and Roth [5] used this approach to obtain a scalar
curvature theory of line trajectories for spatial kinematics. Ruled sur-
faces have a unique feature not shared by general surfaces, the presence
of a uniquely defined curve, its striction curve. This curve coupled with
a reference frame formed from the direction of the rulings and the sur-
face normal combine to yield differential properties of the ruled surface
which completely define it. This formulation is as simple as the Frenet
formulas which define the shape of a space curve, see McCarthy and
Roth [5].

In this paper, using the same way as in McCarthy [4], we derive
the scalar and dual Lorentzian formulations of the curvature theory of
line trajectories and expose the fundamental curvature functions that
characterize the shape of a ruled surface in the Lorentzian space.

2. Preliminaries

If o and a* are real numbers and £? = 0, the combination A = a+£a*
is called a dual number, where £ is dual unit.

The set of all dual numbers forms a commutative ring over the real
number field and is denoted by D). Then the set

D3 = {d: (Al,AQ,A3)| A; eD, 1 SIS?)}

is a module over the ring D which is called a D—module or dual space.
The elements of D? are called dual vectors. Thus a dual vector @ can be
written

4 =a+€&a",
where a and a* are real vectors at R? [9].
The Lorentzian inner product of dual vectors a and b is defined by

<&: i)> = <a: b> + £(<a7 b*> + <a*>b>)
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with & = a + £a* and b = b + £b*, where the Lorentzian inner product
of the vectors a = (a,,a,,a,) and b= (b,,b,,b,) € R} is
(a,b) = a,b, + a,b, — a,b,.

A dual vector 4 is said to be timelike if (@, a) < 0, spacelike if (a,a) > 0
or @ = 0 and lightlike (or null) if (a,a) = 0 and & # 0, where (,) is a
Lorentzian inner product with signature (4,4, —). The norm of a dual
vector g is defined to be
{a,a”)

lall
We denote the set of all dual Lorentzian vectors by D3. Then we have

the following definition.
The hyperbolic and Lorentzian unit spheres are

Hi ={a=a+¢&* €D}|(4,a) = —1; a,a" €R}}

lall = llall +¢

and
S ={a=a+¢a" €D}|(a,a) =1; a,a* €R}},
respectively [6, 10].
The dual Lorentzian cross-product of ¢ and b is defined as
axb=axb+E&axb* +a* xb)
with the Lorentzian cross-product ¢ and b
a x b= (a1,a2,a3) x (b1, b2,b3) = (asbs — azbz, a1bs — azb1, arbs — azb1)

(see [1], [2]).
3. A ruled surface

Given two points p and ¢ in the a rigid body M we define the line
£(t) joining them by the equation
(3.1) 2t) =p+t(qg—p), t €R.

The trajectory traced by #(t), denoted L(v,t), is a ruled surface in
the fixed reference frame F defined by the equation

(32)  L(,t) = P¥) + Q) — P(¥)) = P(¥) +tX(¥),

where P(v) and Q(t) are the trajectories of p and ¢, and ¢ is the
motion parameter. P(%) is a general non-null Lorentzian space curve,
called the directrix of the ruled surface, and X (¢) = Q(¢) — P(¢) is a
curve on the hyperbolic unit sphere HZ of radius 7 = ||p — g|| called the
spherical indicatrix. X (1) is unique since any other pair of points p and
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¢ chosen on £(t) results in the same spherical indicatrix, differing only
in the radius r of the hyperbolic unit sphere. In contrast, the directrix
is not unique since any curve on £(1,t) of the form

(3.3) C¥) = P(¥) + n(¥) X (¥),

where p(1)) is a smooth function, may be used as its directrix.

Now we consider three unit Lorentzian vectors T, G, and X which
form a trihedron defining respectively the central normal, asymptotic
normal, and the direction along generator Lx of the ruled surface £(1, t),
where the vectors T and G are spacelike and the vector X is timelike.
Thus

(r, 7y = (G,G)y =1, (X,X) = -1 and
(1,G) = (I,X) = (G,X) = 0.
The central normal T of the ruled surface £(v,t) is given by

dX/d(¥)
3.4 T=
G4 [ax/d0)]
The set of striction points on L(1),t) is its striction curve, C(¢). It
is defined in terms of the directrix P(1) by relation
(2, 5%)
> d
(3.5) C($) = P(3) - <T_;€—d_;i—xw>
. & dp
[7]. The trihedron T, G, X with its origin located on the striction curve
of L(1,1) is the natural trihedron of the ruled surface.

4. The scalar Lorentzian formulation

The differential geometry of surfaces uses the angular variation of a
natural reference frame on the surface measured relative to itself to char-
acterize its local properties. The equations which result are the structure
equations of the surface and are a generalization of the Frenet equations
of a non-null Lorentzian curve. General surfaces do not have the char-
acteristic striction curve that a ruled surface has. The presence of this
curve allows the consideration of the angular and positional variation of
the natural trihedron T, G, X as it follows C(¢). The resulting equa-
tions completely characterize the local properties of the ruled surface in
a simple form.

The shape of the ruled surface £(1, t) is independent of the parameter
1 chosen to identify the sequence of lines along it therefore we choose
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a standard parametrization. It convenient to use the arc-length of the
spherical indicatrix X () as this standard parameter. The arc-length
parameter s is defined by the equation

o= [1Ee

Here 6 = H o ‘ is called the speed of X (¢). If § # 0 then equation (4.1)

can be inverted to yield 1(s) allowing the definition of X (¢(s)) = X(s).
X (s) has unit speed, that is its tangent vector is of unit magnitude.
The angular variation of the frame T, G, X is obtained by computing

4L and df in terms of T', G, X. Since (T X) = 0, differentiating this

expression with respect to s we get (4X s T X) = —1. Defining
aT
={—,G
’Y <ds7 >
as the function vy we obtain the geodesic Frenet equations of X (1):
ax 7
(4.2) % — X 44C

The function «y is the geodesic curvature of X (). These equations
may be viewec as a set of linear differential equations in the components
of the trihedron T, G, X. If the geodesic curvature -y is specified these
equations can be solved for X(v). Thus v completely characterizes the

spherical indicatrix of L(1,t) [3].
 The formula for « is obtained in terms of X (¢)) and its derivatives
with respect to 1) is:

1 d’°X dX
4.3 =——(—, — x X).
dyp
The positional variation of the trihedron T, G, X is given by & ds’

note 1) is replaced by s, the arc-length of X (v). ‘fg expanded in terms
of the frame T, G, X is

ac  dC dC dacC
4.4 — — — .
(4.4) e = (g XX+ TT + (5 G)G
Using (3.5) and the chain rule differentiation we compute
(4.5) dc =-T'X + AG,

ds
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where
1 dP 1 dP dX
(4.6) A= 5 H H dT/J dT/J x XY,
and
_1.dP du
(47) P = 3G %0 - 55

If the Lorentzian vectors G and X are known from the geodesic Frenet
equations then, given A and T', (4.5) is a set of linear differential equa-
tions which can be solved for C(s). Thus the three functions v, A, and
I’ completely define the ruled surface £(1,t). The functions v, A, and
I" are called the curvature functions of the ruled surface £(1,t).

5. The central normal surface

As the trihedron T, G, X moves along the striction curve of L(3,t)
the two Lorentzian vectors T and G generate ruled surfaces associated
with L£(t,t). Of primary importance is the ruled surface generated by
T called the central normal surface of L(¢,t). This surface, denoted
Lr(s,t), is defined by the equation

(5.1) Ly(s,t) = C(s) +tT(s).
The unit surface normal Ur of L7(s,t) is obtained as
dL o dL
UT(S, t) — dS dt
| ds H

d
(€ +¢4l) x T
T T
{{(E +¢50), ( + ) + (F, T2/
The asymptotic normal B and central normal N dlrectlons of Lp(s,t)
are given by

(5.2) -

1dT
B = T ds X N,
(5.3)
1dT
N = 3%
where » = H || . Thus the natural trihedron of Lr(s,t) is the

reference frame T N
The striction curve of Lr(s,t) is obtained as

(5.4) Cr(s) = C(s) = P(s)T(s),
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where

(5.5) p(s) = V@) _ T+

.

The frame T, N, B happens to be the Frenet reference frame of the
spherical indicatrix X (%) considered as a general non-null Lorentzian
space curve. Thus, we get the Frenet equations

ar =N,
(5.6) A
. gﬁ ?
& = ™,

where s and 7 are the curvature and torsion of X (). These equations
describe the angular variation of the 7', N, B frame of the central normal
surface, Lyp(s,t).

The positional variation of the trihedron T', N, B as it moves along
the striction cirve Cr(s) is given by:

dCT(S) .
(5.7) 2 = 7T - KB,
where

_,dC7(s) _A+Ty

(5.8) K= s ,B) = PR
and

_ dCT(S) _ dP
(5.9) T = I T = I

The functicns s, 7, K and 7 characterize the central normal surface
Lp(s,t) in the same way that v, A, and I' characterize £(¢,t). The
extra function s appears because the parametrization of Lp(s,t) was
not normalized by the arc-length of its spherical indicatrix T'(s) as was
done for L(v,1).

The relative orientation of the two reference frames 7', G, X and T,
N, B is given by the relations

N = ix+1g,
(5.10)
B = iG+1X.

The first of these is obtained by equating ig— in equations (4.2) and
(5.6) and the second by computing the Lorentzian cross-product of the
resulting expression with 7. Equation (5.10) shows that in the plane
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normal to T the frame G, X is rotated relative to the frame N, B by
the hyperbolic angle

(5.11) p= arcsh(—}l;).

This hyperbolic angle is the Lorentzian spherical radius of curvature
of X (v) and is measured from the Lorentzian vector B to X.

The plane spanned by the vectors T, N is the osculating plane of
X (). In the osculating plane lies the circle which best approximates
X (1), called the osculating circle. It is defined by the vector equation

S(¢) = shpsin T — shpcos N + chpB.

The radius of the osculating circle is R = shp.

The functions 7, » and 7 are not independent. The relations be-
tween them are obtained from equations (5.10). Since N and B are unit
spacelike and timelike vectors, respectively, we have

(5.12) w=1/v2-1.

Taking into consideration hyperbolic angle p between the frames G,
X and N, B and the equation % = 7N we obtain

_dp
T=o
Since it is possible to obtain the curvature functions v, A, and T’
directly from the functions s, K, p and P, using equations (5.5), (5.8)
and (5.12), this latter set of functions also completely characterizes the
ruled surface L(1,t).

(5.13)

6. The shape of a ruled surface

The results derived thus far provide a kinematic interpretation of the
shape of the surface £(v,t) in terms of the motion of a line, Lx, di-
rected along X () and passing through the striction curve C(¢). At
a particular instant 1 = 1 the velocity of Lx is given by its instan-
taneous rotation about the central tangent vector G together with its
instantaneous translation along G. The ratio of these two quantities is
the function A, defined in (4.6), known as the distribution parameter of
L, 1).

The curvature of the path of Lx is most easily described by consider-
ing the velocity of the line Lt along the central normal T' of £(v,t). Lt
rotates about and translates along its central tangent B with angular
velocity s and linear velocity K, refer to (5.6) and (5.8). The ratio of
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these values is the distribution parameter Ay = % of Lr(s,t). The line
along the central tangent of Lr(s,t) is Lp. Lt is perpendicular to and
intersects both Lx and Lg. P, given (5.5), is the distance from Lg to
Lx; and p, defined by (5.11), is the hyperbolic angle from Lp to Lx
measured about Lr.

The line Lp (the central tangent of the central normal surface) is fixed
to the second order as Lx moves about it with pitch Ap = %, holding P
and p constant. Thus locally the ruled surface L£(v,t) is traced during
a screw displacement of pitch A7 about the axis Lp, by the line Lx
located at a distance P and hyperbolic angle p relative to Lp. Lp is
called the Disteli axis of the ruled surface, it is analogous to the center
of curvature of a non-null Lorentzian curve.

7. The dual Lorentzian vector formulation

In this section we present the differential geometry of ruled surfaces in
terms of three dimensional dual Lorentzian vector calculus. The result
is a set of dual functions which characterize the ruled surface, (see [9]).

Dual Lorentzian vector calculus allows the Pliicker vectors X and
P x X of aline L (X is the direction of L and P is any point on L)
to.be assembled into a single dual timelike vector X = X + £P x X.
The symbol £ is called the dual unit. Operations with £ are the same as
with real numbers except that £2 = 0. All the operations of vector alge-
bra are available for the manipulation of dual Lorentzian vectors. This
fact reduces computations representing lines in the Lorentzian space to
simple vector operations.

A ruled surface £(v,t) = P(¢)+tX (v) is written as the dual Lorentz-

ian vector function X (¢) given by

(7.1) X() = X(®) + EP(W) x X ().

Since the spherical image X (1) is a unit timelike vector the dual
vector X (¢) also has unit magnitude as is seen from the computation:

(X(¥),X(¥)) = (X+EPxX, X +EP xX)
= (X, X)+{(X, P x X)
+£2(P x X, P x X))
= (X,X)=-1.

(7.2)

Thus the ruled surface becomes a dual non-null Lorentzian curve on
a dual hyperbolic unit sphere Hg.
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The dual arc-length of the ruled surface X (¢) is defined as

dX(¢)

@ ||

P
(73) sw) = [ |°

0
The integrand of (7.3) is the dual velocity, 8, of X () and is given by

d'd)’
i

7

co 5o ” H H (P x %)

which in view of equation (4.6) is
(7.5) 6 =38(1+£€A).

As long as 6 # 0, the dual function §(3) can be inverted to yield
the real function of a dual parameter () which we use to reparame-
terize the dual non-null Lorentzian curve. To compute derivatives with
respect to § we note that by definition §(¢(5)) = §; differentiation of
this expression with respect to § yields

ds dy
(7.6) A R
from which we obtain
d 1
55
and
d 1 d
(7.7) ds  1+E&Ads

We reparameterize X (1) to obtain X (¢(3)), such that

s X _dX dp 14X

ds dw ds 5 dw
Thus as in the case of spherical curves the dual arc-length parameter
normalizes the representation of the ruled surface X (1) such that its

dual tangent vector T has unit magnitude.
Using (7.7) we derive the dual Lorentzian form of the geodesic Frenet
equations in exactly the same way as the geodesic Frenet equations (4.2):

(7.8)

(7.9) i - X 4 @G
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The dual geodesic curvature ¥ is defined as

ar .. 1 ,dX dX
— = = {(—,— x X).
(GO =5t 3y * 0

As in the case of spherical curves we can derive the dual Lorentzian form
of the usual Frenet equations of X (v):

(7.10) 5=

i = N,

(7.11) i = T ++B,
& = 3N

The trihedrons 7', G X and T N B are related by the equations
N = 1X+106,

(7.12) A
B = 1X+16

The dual hyperbolic angle p between the frames G, X and N, B is
defined by the relation

1
(7.13) p = arcsh(=).
»
From (7.12) and (7.13) we also obtain the relations

(7.14)

I
HAEN
o
|
-

8. Uniting the two formulations

It is easy to see the dual Lorentzian vector calculus is a convenient tool
for the analysis of ruled surfaces in the form of dual Lorentzian spherical
curves. The derivations consistently yield formulas which are identical
to those obtained in the differential geometry of non-null Lorentzian
curves on a hyperbolic unit sphere. In a way this tool is too efficient, it
suppresses important geometric concepts such as the striction curve and
Disteli axis as well as the distribution parameter and the other curvature
functions. We now open up the dual Lorentzian vector formalism to
expose the relation between the reference frames T G X and T N,
B and the natural trihedron, central normal surface, and Disteli axis of
L(y,t); and to obtain the dual curvature functions %, iz and 7 in terms
of the functions v, A, I" and s, K, p, and P.
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The dual Lorentzian vector 1" obtained in (7.8) represents a line which
we denote as Lz, we will soon see that it is the central normal of X (/).
The Pliicker vectors of Lt provide information about a point C' on Lt
via the relation

(8.1) T=T+¢CxT.
To determine C' we compute -‘% directly and obtain
dx (45.,7)
(8.2) — =T+ P—-——~X ) xT.
ds ( (%, %) )

Thus C is the striction point of X (1), see equation (3.5); and we see
that T is the central normal of L(1,1).

As one might expect the dual Lorentzian vector G =T x X defines
the line corresponding to the central tangent of L£(v,t)

G = (T+ECxT)(X +£C x X)

(8.3) = TxX+£Cx(TxX)].

Thus the trihedron of dual Lorentzian vectors T, G’, X , is the nat-
ural trihedron of the ruled surface L£(1,t). The dual geodesic Frenet
equations (7.11) define the differential motion of this reference frame.

The geodesic curvature 4 characterizes the motion of the T, G, X
frame. We determine 4 by expanding % to obtain

(8.4)

dT 1 dT , ,dC dT
4 1+éA (& el xTHOx ).
This expression is further expanded using equations (4.2) and (4.5) to

yield

dT 1
5) == = — T .
(8.5) e 1+§A(X+7G+§(( I'X + AG) x T+ C x (X +~vG)))
Computing the Lorentzian cross-product and collecting terms we obtain
a7 1
(86) —= =1 +§A[(v+§r)(c+gc x G) + (1 — EA)(X + £C x X)).

Comparing (7.9) and (8.6) we see that 4 is defined in terms of v, A and
I' as:

. +¢&r
(8.7) y=1

1+£A

=y + &I —yA).
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Now consider the dual Lorentzian unit vector N defined in (7.11). Ex-
panding ‘fi—g (which equals %N ), this time in the T, N , B frame, we
obtain

ar 1
di  14+EA
This expressior: may be rewritten in terms of the striction curve Cr(s)
of the central normal surface L7(s,t) to yield

dac
MN+§40—§L£ﬁT)xN+§ﬂ913Ny

(8.8) o5

dT 1

( =
(8.9) di  1+£A

[(3¢ 4+ EK)(N + ECr x N)].

Thus N is the line through the striction point Cr of Lp(s,t) in the
direction of its central normal N. Comparing (8.9) and (7.11) we see
that the dual curvature i is given by

The dual Lorentzian vector B = T x N is the central tangent of L7(s, t),
that is B is the Disteli axis of the ruled surface £(¢,t). The dual
Lorentzian Frenet frame T', N, B is the natural trihedron of the central
normal surface T'(s).

We now examine the dual torsion 7 of X (). It is defined by
dN .
—, B).
ds’ )
Differentiating (8.9) to obtain %—Jg and using (5.6) and (5.7) to simplify
the resulting expression, we obtain

(8.12) F=-T+ErA-T).

(8.11) ' F=—(

Consider now the coefficients %{ and —;Y—{ in equations (7.12). Using the
formulas (8.7) and (8.10) for 3 and 4, we obtain
R A

(8.13)
1 = 2gerEK
P, which is defined by equation (5.5), is the normal distance along

the central tangent of £(1),t) measured from the Disteli axis Lp to the
line Lx. The dual number p = p+£P is the dual hyperbolic angle of Lx
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measured relative to Lg. The sh and ch functions of a dual hyperbolic
angle are defined to be

shp = shp+ EPchp

(8.14) chp = chp+ &Pshp.

Substituting (5.11) which defines p into (8.13) and comparing the
result to (8.14) we see that

Xl=

= shp,
(8.15) )
I = chp

The dual hyperbolic angle p = p+£P is the dual pseudo spherical radius
of curvature.

The formulas (8.7), (8.10), (8.12) and (8.13) unite the dual and scalar
Lorentzian formulations of the differential geometry of ruled surfaces. It
seems clear that no matter how the ruled surface is represented the
curvature functions 7y, A, and I'; or the equivalent set s, K, p, and P,
contain the fundamental geometric information describing the shape of
the surface.

ExAMPLE 1. The ruled surface traced by a line fixed in a rigid body
undergoing a screw displacement of constant pitch is fundamental to the
curvature theory of ruled surfaces. It is the analog for a ruled surface of
the osculating circle of a curve [4]. Now we shall examine its properties
in some detail.

This surface is generated by the line Lg carried by a the helix of the
1st kind of radius a and pitch b in R with respect to Lorentzian inner
product with signature (+,+,—). Align the axis of the helix of the 1st
kind with the timelike z-coordinate axis so the equation of the helix of
the 1st kind is

P(y) = (acost,asiny, b¢)

The direction, S(¢), of Lg lies in the plane normal to the radius vector
r = (cos 1, sin1, 0) and at a hyperbolic angle # from the timelike z-axis
direction z, that is,

S(yp) = —shfrt + chhz
—shf(—siny, cos ¥, 0) + ch6(0,0,1)
= (sh@sin, —shé cos ), chh).
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Thus we get the ruled surface Lg(%,t) :

Ls(4,t) P(y) +tS(¥)
(acostp,asin, bp) + t(shf sinyp, —shé cos 1, chh),

where 0, a, and b are constants. Therefore, the dual vector function
representing Lg(1),t) is given by

(8.16) S() = S@)+EPW) x S(¥)
= (shfsin, —shf cos 1, chf)
+&(—bypshf cos i — asinchb,
a cos chf — bipshf sin 1, —ashf).

We already know quite a bit about the ruled surface S (1) from the way
it was constructed. Its central normal surface Lt is the helicoid of the
1st kind swept out by the radius vector r = (acos ), asin,0) = T given
by the equation

Lp(,t) = (0,0,b)) + t(acost, asin, 0).

The distribution parameter At of the central normal surface is it, the
pitch of the helix of the 1st kind P(3). The Disteli axis of Lg(v,t) is
the timelike z-coordinate axis, and the dual pseudo spherical radius of
curvature p is simply

(8.17) p+EP =0+ ta.

We now determine the curvature functions A, ~, I, s, 7, K and 7T,
from the relations defined above. First we note that since p and P are
constants we cbtain from (5.9) and (5.13) that 7 = 0 and 7 = 0. From
equations (5.11) and (5.12) we easily have » = 2, and v = %. Since
Ap = % we get K = shLG‘ Now, only A and I" remain to be determined.

The functions A and I' can be obtained directly from equations (5.5)
and (5.8) since the functions s,  and P are known. However we de-
termine them indepently using formulas (7.4) and (7.10) to illustrate

computations using the dual vector form of Lg(w,1).
To compute § in (7.4), we first determine

S (1
d—%—(ij—) = (shf cos,shfsin,0)

+&((—bsh® — achh) cos i + bipsh sin i,
(—achf — bsh@) sin 1y — byyshb cos ), 0).
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Computing the magnitude of 45W) e get
& g

- ldS(®»)
5 _— W

which leads to the result

bshé + achf
shé ’

=sh0(1—§

bshé + achf
shé '

To determine the dual geodesic curvature 4 of S(v), we first determine
&3 ()
dy?

A=—

(—sh@ sinp, shf cos 1, 0)

+&((2bshf + achf) sin ) + bypshé cos 1,
(—achf — 2bsh@) cos 1 + bpshf sinp, 0),

and then compute
P3(W)  dSw)
dy? dp
Using (7.10) we obtain

= (0,0, —sh26) + £(0, 0, 2achfshé + 3bsh26).

ché n a
sh2¢’

~

77 ho
and from (8.7) we obtain that
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