STRONG COMMUTATIVITY PRESERVING MAPPINGS ON SEMIPRIME RINGS

ASIF ALI, MUHAMMAD YASEN, AND MATLOOB ANWAR

ABSTRACT. Let R be a semiprime ring and f be an endomorphism on R. If f is a strong commutativity preserving (simply, scp) map on a non-zero ideal U of R, then f is commuting on U.

A ring R is said to be prime if aRb=0 implies that either a=0 or b=0, and semiprime if aRa=0 implies that a=0 where $a,b\in R$. A prime ring is obviously semiprime. If R is a ring and $S\subseteq R$, a mapping $f:R\to R$ is called strong commutativity preserving (simply, scp) on S if [x,y]=[f(x),f(y)] for all $x,y\in S$; and commuting on S if [f(x),x]=0 for all $x\in S$. For recent references on the commutativity in prime and semiprime rings, see [1] and [3]; and for scp maps see [2] and [4].

To prove the main result we need the following lemma which is of independent interest and can be used for further investigation.

LEMMA 1. If R is a semiprime ring and f is an endomorphism on R which is scp on a non-zero right ideal U, then for all $x \in U$, f(x) - x commutes with [U, U].

Proof. For all $x, y \in U$, we have [x, xy] = [f(x), f(xy)]. This implies that x[x, y] = f(x)[x, y] and so

$$(f(x) - x)[x, y] = 0.$$

From [x, yx] = [f(x), f(yx)] we can similarly show

$$[x,y](f(x)-x)=0.$$

For all $x, y \in R$, replacing y by yr, we get

$$(f(x) - x)y[x, r] = 0.$$

This implies that (f(x) - x)U[x, r] = 0 and so

$$(f(x) - x)UR[x, r] = 0.$$

Received April 13, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 13A99.

Key words and phrases: prime and semiprime rings, commuting and scp maps.

Since R is semiprime, it must contain a family $\omega = \{P_{\alpha} | \alpha \in \lambda\}$ of prime ideals such that $\bigcap P_{\alpha} = 0$. If P is a typical member of ω and $x \in U$, then from the last equation, we have $(f(x) - x)U \subseteq P$ or $[x, R] \subseteq P$. Suppose $\exists y \in U$ such that $[y, R] \not\subseteq P$. This implies that

$$(f(y) - y)U \subseteq P$$
.

Let z be any element of U such that $[y+z,R] \subseteq P$. This means that $[z,R] \nsubseteq P$ and hence $(f(z)-z)U \subseteq P$. On the other hand if $[y+z,R] \nsubseteq P$, then $(f(y+z)-(y+z))U \subseteq P$. This implies that $(f(z)-z)U \subseteq P$. Thus we conclude that $(f(z)-z)U \subseteq P$ for all $z \in U$ and hence $(f(z)-z)[U,U] \subseteq P$ for all $z \in U$.

Since P is arbitrary and $\bigcap P_{\alpha} = 0$, we have $(f(z) - z)[U, U] = \{0\}$ for all $z \in U$. Similarly we can show that

$$[U, U](f(z) - z) = \{0\}.$$

This implies that $(f(z) - z) \in C_R[U, U]$ for all $z \in U$.

Now we can easily prove the following result:

THEOREM 1. Let R be a semiprime ring and f be an endomorphism on R. If f is scp on a non zero ideal U of R, then f is commuting on U.

Proof. By above lemma and lemma 1 of [5], we have $(f(x) - x) \in C_R(U)$, for all $x \in U$. Thus we have [f(x) - x, x] = 0 for all $x \in U$. This implies that [f(x), x] = 0 for all $x \in U$ and hence f is commuting on U.

The following are two useful Corollaries of the preceding theorem.

COROLLARY 1. Let R be a semiprime ring and f be an endomorphism on R. If f is scp on R, then f is commuting on R.

COROLLARY 2. Let R be a prime ring and f be an endomorphism on R. If f is scp on R, then R is a commutative integral domain.

References

- [1] H. E. Bell, A note on centralizers, Int. J. Math. Math. Sci. 24 (2000), no. 1, 55-57.
- [2] H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447.
- [3] H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92–101.
- [4] M. Brešar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), no. 2, 525–546.

[5] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992), no. 1, 205–206.

Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan

E-mail: asif.ali@anu.edu.au yaseen@lums.edu.pk matloob_t@yahoo.com