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BOEHMIANS ON THE TORUS

DeNNIS NEMZER

ABSTRACT. By relaxing the requirements for a sequence of func-
tions to be a delta sequence, a space of Boehmians on the torus
B(T?) is constructed and studied. The space B(T?) contains the
space of distributions as well as the space of hyperfunctions on the
torus. The Fourier transform is a continuous mapping from B(T%)
onto a subspace of Schwartz distributions. The range of the Fourier
transform is characterized. A necessary and sufficient condition for
a sequence of Boehmians to converge is that the corresponding se-
quence >f Fourier transforms converges in D'(R?).

1. Introduction

Boehmians are classes of generalized functions whose construction
is algebraic. In [3], Mikusiriski constructs a space of Boehmians (7
in which each element has a Fourier transform which is a distribution.
Moreover, the Fourier transform is a continuous bijection from (37 onto
the space of Schwartz distributions D’(R?).

In this note, we will investigate a subspace 3(T%) of B7. The space
B(T?) can be thought of as the space of Boehmians on the torus T4,

By using a slightly different construction, the space 3(I") of Boehmi-
ans on the unit circle has been studied in [1, 5, 6]. The space 3(I') is
quite general. It contains a subspace which can be identified with the
space of periodic Schwartz distributions as well as some elements which
are not hyperfunctions. However, the space of hyperfunctions cannot be
identified with any subspace of 3(I').

One of the motivating factors for this paper was to construct a space
of Boehmians which contains the space of periodic hyperfunctions. By
using a more general definition for delta sequences, we will see that both
B(I") and the space of hyperfunctions are properly contained in B(T").
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This article is organized as follows. Section 2 contains notation and
the construction of the space of tempered Boehmians B7. Section 3
contains the construction of the space of Boehmians on the torus 3(7%)
as well as the investigation of the Fourier transform on 8(T'?). The range
of the Fourier transform is characterized. In Section 4, we study the
convergence structure of §-convergence on 3(T¢). An inversion formula
for the Fourier transform is given. It is shown that there is a locally
convex metric topology which gives the identical convergent sequences
in 3(T?) as does d-convergence.

2. Notation and the space 31

In this section, the space of tempered Boehmians 7 [3] is introduced.

Let o = (a,. .., aq), where o is a nonnegative integer, be a multi-
o1 ay
index. Then, |a| = a1 + - + a4 and D = (8%)1) <B%d) I

z,y €RY thenx = (z1,...,24),¥ = (Y1, -, Ya), TY = T1y1+ - +Zq¥a,
and ||z|| = vz - z.

A complex-valued infinitely differentiable function f is called rapidly
decreasing if
(2.1) sup sup (1 + 2%+ -+ 22)™|D*f(x)| < 00

fae| <m zeR4

for every nonnegative integer m. The space of all rapidly decreasing
functions on R? is denoted by S(R?). Elements of the dual space S’(R%)
of S(R?) are called tempered distributions.

A sequence o, € S(R?) is called a delta sequence provided:

i) [¢on=1forallneN,
(ii) [|en| < M for some constant M and all n € N,
(iii) lim ||)|*|n(z)|dz = 0 for all k € N and € > 0.
"0 Jlal|>e
A complex-valued function f is called slowly increasing if there exists

a polynomial p on R? such that % is bounded. The space of all slowly

increasing continuous functions on R? is denoted by 7. Notice that T
may be viewed as a subspace of S'(R%).

A pair of sequences (fy,, ) is called a quotient of sequences if f, € T
forn € N, {¢n} is a delta sequence, and fx*@m = fm*g for allk,m € N,
where * denotes convolution:

(2:2) (F+0)e) = [ o= u)plu)du
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Two quotients of sequences (fn, ¢rn) and (gn,¥n) are said to be equiv-
alent if fx * m = gm * @i for all k,m € N. A straightforward calcula-
tion shows that this is an equivalence relation. The equivalence classes
are called tempered Boehmians. The space of all tempered Boehmians
will be denoted by Br and a typical element of S7 will be written as
F=|&].

¥n
A function f € 7 can be identified with the Boehmian {f ; ”] The
identification is independent of the delta sequence.

The operations of addition, scalar multiplication, and differentiation
are defined as follows:

In 9n Jn % Yn +gn*§0n:|
(2.3) l: } ["/’n:' l: On * Pn
(2.4) o [ﬁ] = [%] ,where a € C
¥n Pn
(2.5) De [f_"] _ [__f" * Da%}
Pn Pn * Pn

The Fourier transform of f € S(R?) is denoted by f,ie

o~

(2.6) fo)= | e du

The space of infinitely differentiable functions on R? having compact
support is denoted by D(R?), and the dual space of D(R?) is denoted
by D'(R%). Tae space D’ (R?) is the space of distributions. The Fourier
transform f for a member f € S'(R?) is the tempered distribution de-
fined by (f,¢) = (f, ), where ¢ € S(RY).

Let {pn}52.1 be a delta sequence. A useful property that will be used
throughout the sequel is that @, — 1 uniformly on compact subsets of
R? as n — oo.

The existence of a delta sequence {yy,}52; such that the support of
each @, is compact will also be useful. This can be shown as follows.

Let ¢ € D(R?) such that 4(0) = 1. Since the Fourier transform
maps the space S(R?) onto itself, there exists a ¢ € S(R?) such that
¢ = 1. Now, put @n(z) = np(nz),n € N. Tt is not difficult to show
that {pn}52 ; is a delta sequence and that @, has compact support for
all n € N.



834 Dennis Nemzer

DEFINITION 2.1. The Fourier transform of a tempered Boehmian F' =
[‘%] is given by F = limy_e0 fn , where the limit is taken in D'(R¢).

The above limit exists and is well-defined. Moreover, Mikusiriski [3]
has shown that the range of the Fourier transform is D'(R?).

3. The space 3(T%)

In this section we will construct and study the space of Boehmians
on the torus

(3.1) T = {(e",...,e") : x; real}.

We make no distinction between a function on 7% and a function on
R? that is 27-periodic in each variable.

For f € T, define 7o, f(x) = f(x1+ 27,...,24+ 27). The translation
operator 7o, can be extended to B as follows:

For F = [ﬁ] , put 7o F = [”—”&]

©n n
It is easy to check that 79, F is a tempered Boehmian.
The space of Boehmians on the torus 3(T?) is defined as follows.

(3.2) B(T? = {F € 87 : 79x F = F}.
The proof of the next lemma is routine.

LEMMA 3.1. Let F' = [Zp%] € Br. Then F € B(T?) if and only if for
alln € N, f, is 2w-periodic in each variable .

The Fourier coefficients for a locally integrable function f on T¢ are
given by

1 .
(3.3) al(f) = —— (z)e”* D de, ke 7
(2m)¢ Jra

LEMMA 3.2. Let F = [(J;—Z] € B(T?). For each k, the sequence

{ck(fn)}52, converges.

Proof. Let k € Z%. Since {¥p}p2y is a delta sequence, there exists a
p € N such that @p(k) # 0.
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Now,
. @p(k) _ ck(fn * ‘Pp) _ Ck(fp * ‘Pn)
Ck(fn) = Ck(fn)ap(k) = @p(k}) {ﬁp(k)
:Ck(fp)A N Ck(fp)
2k " 7 500
as n — 00. O
Suppose that [;%] , [gf] € B(T?) such that [;0%] = [%ﬂ Then

cp(fn)ak:(p) = Cp(fn * Uk) = Cp(gk * Q) = Cp(gk)an(p) for all p,n, and k.
Thus the following definition is well-defined.

DEFINITION 3.3. Let F' = LDLZ] € B(T?). Define the k-th Fourier
coefficient of F' as

(3.4) ck(F) = lim_cx(fn).

Let § € D''R?) denote the Dirac measure on R?. Thus, (§(z—k), ) =
o(k) for ¢ € D(R?) and k € Z°.

THEOREM 3.4. Let F € B(T%). Then F = ¥, 4 cx(F)5(x — k).

Proof. Let F = [J@L’;] € B(T?). Then, for each n, 2 {kj<m cx(fn)eilE®)
— fp, in S’(R?) as m — oco. By the continuity of the Fourier transform
on §'(R%), we obtain > ik<m Ck(fa)8(z — k) — fp in S'(R%) as m — oo.
Thus, fr, = Y peza ck(fa)d(z —k),n € N. Now, > 7q ck(fn)é(m: k) —
S keze ck(F)é(z — k) in D'(R?) as n — oo, and, by definition, f, — F
in D'(RY) as n — oco. Therefore F = Y kezd Ce(F)o(z — k). O

The collection of all distributions of the form ), 4 axd(x—Fk) (where
o, € C) will be denoted by Dj(R?).

The previous theorem shows that the Fourier transform maps 8(T¢)

into Dj (RY). The next theorem shows that the mapping is actually onto
Dj(RY).

THEOREM 3.5. The Fourier transform is a bijection from 3(T%) onto
Dj(RY).

Proof. Let {ak}reze be a matrix of complex numbers. Let {¢n}32,
be a delta secuence such that supp @, is compact. Put

fu(@) = axn(k)eE?

kezd
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forn =1,2,.... It is routine to show that F' = [2%] € B(T%). Moreover,

for each k € Z¢, c(F) = limy, o0 ek (fn) = limp— 00 0k Pn (k) = ag. Thus,
F = Y okezd axd(x — k). Therefore the Fourier transform maps B(T4)
onto Dj(RY).

Now to show that the Fourier transform is an injection, let F' =

[%] € B(T?). Tt is not difficult to show that cx(fp) = ck(F)Pp(k) for

all k € Z¢ and p € N. Suppose that F = 0. Then cx(F) = 0 for all
k € Z%. Thus c(f,) = 0 for all k € Z? and p € N. Therefore, F = 0.
This completes the proof. O

It is known that f is a périodic hyperfunction if and only if f =
> keze ax0(z — k), where imsupy, oo "W/|an| < 1. Thus the previous
theorem shows that the space of hyperfunctions on T¢ can be identified
with a proper subspace of B(T¢).

4. Convergence

Let U be a class of sequences on a space X (with or without a topol-
ogy). We say that x,, Y pif (z,21,%9,...)isinU. U is called topological
if there exists a topology O for X such that z,, Y ¢ifand only if z, G ..

The space B(I') of Boehmians on the unit circle with a convergence
structure known as A-convergence is topological. Indeed, G(T') is an
F-space. That is, it is a complete topological vector space where the
topology is given by an invariant metric. However, 8(T') is not locally
convex [1].

In this section, we introduce a convergence structure on 3(7?) known
as §-convergence. For the space B(T¢), §-convergence is equivalent to A-
convergence. We will show that 3(T%) with §-convergence is topological.
In fact, §-convergence is equivalent to a locally convex metric topology.

DEFINITION 4.1. A sequence of functions f, € 7 is said to be con-
vergent to f € 7 if there exists a polynomial p such that %’l — 0

uniformly on R¢ as n — oo.

Define the map ¢ : T — B1 by
J* Son:|
u(f) = ,
=2
where {5 }0%, is any fixed delta sequence.
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It is not difficult to show that the mapping ¢ is an injection which
preserves the algebraic properties of 7. Thus, 7 can be identified with
a proper subspace of 3.

For ¢ € S'R?) and F = [g—’;] € B(T%), F x4 is defined as F % 1 =
{%’:é] It is straightforward to verify that F v € B(T%). Moreover, by
a routine calculation we see that cx(F * 1) = cx(F)9(k) for all k € Z<.

DEFINITION 4.2. A sequence of tempered Boehmians {F,, }22, is said
to be §-convergent to a tempered Boehmian F, denoted 4-lim,, o, F,, =
F, if there exists a delta sequence {p,}7>; such that F, x g, Fxp € T
for all k,n € N, and for each k € N, F, x o, — F x ¢ in T as n — oo.

The proof of the following theorem may be found in [3].

THEOREM 4.3. Suppose F,,, F' € B forn =1,2,... and 6-lim,,_,, F},
= F. Then lim,_.o Fy, = F, where the limit is taken in D'(R%).

THEOREM 4.4. (Inversion) Let F € 3(T%). Then,

F=9§ nlgr;o Z cx(F)e .
|k|<n

Proof. Let F = L{%] € B(T?). We may assume that f, € C°(T4)

for all n € N. For if not, replace f, with f, x ¢,. Then F' = [—(J;}lni*ﬁ—z]

and f, * on € C(T?) for all n € N. Let Fy = Yy <, ch(F)e™®) for
n = 1,2,.... Then for each p, F, *x ¢, = Zlklﬁn i (F)Pp(k)ei k=) =
Z]k]gn e (F * Wp)ei(k'x) €T forn=1,2,.... Also, for each p, F x ¢, =
fp € T. Since for each p, F % ¢, € C>(TY), Z[klgn cx(F * gop)ei(k"”) N

F'x¢, uniformly on R? as n — oo. This implies that for each p, Foxpp —
F % ¢p,inT esn — oo. Hence, é-lim,_. F, = F. This completes the
proof of the theorem. O

Let yp(F) = > jk<p lox(F)| for p=1,2,.... Then {7,}32, is a count-
able separating family of seminorms on B(7¢). It is not difficult to
show that (8.1%), {fyp}g‘;l) is complete, and hence, (B(Td),{vp};il) is
a Fréchet space.

THEOREM 4.5. Let F,,, F € B(T?) forn = 1,2,.... Then §-lim,_,oF,
= F if and only if for each p, v,(F, — F) — 0 as n — oco.



838 Dennis Nemzer

Proof. Let F,, € B(T%) for n = 1,2,... such that for each p, v,(F, ) —
0 asn — oco. Let {;}32; be a delta sequence such that supp @; is
compact.

Let n,j €.N be fixed. Then, for each m € N there exists a constant
M., such that |cg(F, * ¢;)| = lck(F ek < 1+|k;)m for all k € Z¢.

Thus F, x p; € C°°(T?) for all n,j € N. Therefore, Fj, * p; € T for all
n,j € N.
Now, for each n,5 € N,

(A1) [(Fax )@ = | D exlFnx o)™ < 3 Jep(Fa)lIBs(k)],

kezZd kezZd

for all z € R?. Since @; has compact support, for a fixed j, the above
sum has only a finite number of nonzero terms. Therefore, since, for
each p, Yp(Fn) — 0 as n — oo, (F, * ¢;}(x) — 0 uniformly on R? as
n — o0o. Thus, for each j € N, F, x¢; — 0in 7 as n — oo, and hence
6-limy,— o0 Fy, = 0.

For the other direction, suppose that (5-lir/r\1n_,oo F, = F. Now f‘n =
> kezd k(Fn)d(z — k) forn = 1,2,... and F = 3, ya ci(F)d(x — k).
By Theorem 4.3, F, - FinD (R%) as n — oo. This and the above
give for each k € Z4, cx(F,) — cx(F) as n — oo. Thus, for all p € N,
Yp(Frn—F) — 0 as n — oco. This completes the proof of the theorem. [J

The previous theorem shows that a sequence in B(T%) is §-convergent
if and only if it is convergent in the locally convex metric topology
generated by the family of seminorms {v,}72;.

The following corollary shows that 3(7?) is isomorphic to the space
D (RY).

COROLLARY 4.6. Let F,,F € B(Td) for n = 1,2,.... Then, é-
limy,—oo Fr, = F if and only if lim,,_, F}, = =F (in D’(Rd))

As a final note, in [4], Mikusiriski describes a construction for Boehmi-
ans on manifolds. He indicates how this may be used to construct
Boehmians on a torus. However, the delta sequences used in Mikusinski’s
construction are less general than the one used in our construction.
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