Resistive Current Mode Control for the Solar Array Regulator of SPACE Power System

인공위성 시스템을 위한 태양전지 전력조절기의 저항제어

  • 배현수 (서울대 전기컴퓨터공학부) ;
  • 양정환 (서울대 전기컴퓨터공학부) ;
  • 이재호 (서울대 전기컴퓨터공학부) ;
  • 조보형 (서울대 전기컴퓨터공학부)
  • Published : 2006.12.20

Abstract

A large signal stability analysis of the solar array regulator system is performed to facilitate the design and analysis of a Low-Earth-Orbit satellite power system. The effective load characteristics of every controllable method in the solar array system are classified to analyze the large signal stability. Then, using the state plane analysis technique, the stability of various equilibrium points is analyzed. A nonlinear transformation algorithm, which changes the effective load characteristic of the solar array regulator as constant resistive load, is also proposed for the large signal stability. The proposed resistive current mode control system can control the solar array output for purposes such as peak power tracking control and battery charging control. For the verification of the proposed large signal analysis and resistive current mode control, a solar array regulator system consisting of two 100W parallel module buck converters has been built and tested using a real 200W solar array.

저궤도 인공위성 전력계 시스템의 설계 및 해석을 위한 태양전지 전력조절기의 대신호 안정도해석을 수행한다. 태양전지 전력조절기에서 제어가능한 모든 방법에 따른 태양전지에서 바라본 태양전지 전력조절기의 부하특성을 분류하고, 상태공간해석을 이용하여 태양전지 시스템의 대신호적 안정도를 해석한다. 또한, 본 논문에서는 태양전지 전력조절기의 부하특성을 정전력부하에서 정저항부하로 변환하여 대신호적인 안정도를 확보하는 비선형변환을 제안한다. 제안된 변환기법을 통해 최대전력점 추적제어나 배터리 충전제어 및 전류분배제어가 가능한 병렬 모듈 태양전지 레귤레이터에 적합한 단일 전류 제어기를 구성한다. 제안된 대신호 해석과 저항제어를 검증하기위해, 200W급 태양전지와 100W급 태양전지 전력조절기 두 모듈을 병렬로 구성하여 실험하였다.

Keywords

References

  1. 'KOMSAT3 Technical Report', KARI, 2005
  2. B. H. Cho, J. R. Lee, F. C. Lee, 'Large Signal Stability Analysis of Spacecraft Power Systems', IEEE Transaction on Power Electronics, Vol. 5, No. 1, pp. 110-115, 1990 https://doi.org/10.1109/63.46005
  3. W. Tang, F. C. Lee, R. B. Ridley, 'Small-signal Modeling of Average Current-Mode Control,' IEEE Transactions on Power Electronics, Vol. 8, Issue 2, pp. 112-119, April. 1993 https://doi.org/10.1109/63.223961
  4. K. Siri, V. A. Caliskan, C. Q. Lee, 'Maximum power tracking in parallel connected converters', Aerospace and Electronic systems, IEEE Transactions on, Vol. 29, Issue 3, pp. 935-945, July 1993 https://doi.org/10.1109/7.220941
  5. Siri K., 'Study of system instability in solar-array-based power systems,' IEEE Transactions on Aerospace and Electronics Systems, Vol. 36, No. 3, pp. 957-964, July 2000 https://doi.org/10.1109/7.869515
  6. Huynh P. and Bo. H. Cho, 'Design and Analysis of a Regulated Peak-Power Tracking System,' IEEE Transactions on Aerospace and Electronic systems, Vol. 35, No. 1, pp. 84-91, July 1999 https://doi.org/10.1109/7.745682
  7. Katsuhiko Ogata, Modern Control Engineering, 2nd ed., Prentice Hall International, 1990
  8. J. H. Lee, H. S. Bae, S. H. Park and Bo. H. Cho, 'Constant Resistance Control of Solar Array Regulator Using Average Current Mode Control,' The Applied Power Electronics Conference and Exposition, pp. 1544-1549, Mar 2006
  9. Hyunsu Bae, Jaeho Lee and Bohyung Cho, 'Large Signal Analysis of the Solar Array Power System Using the Controlled Load Characteristic,' 4th International Energy Conversion Engineering Conference, June 2006