주성분 분석과 서포트 벡터 머신을 이용한 효과적인 얼굴 검출 시스템

강병두*, 권오희**, 성치영***, 전재덕****, 엄재성*****, 김종호******, 이재원*******, 김상균********

요 약

본 논문은 얼굴 영상에서 추출된 특징 값을 주성분 분석(Principle Component Analysis: 이하 PCA)을 이용하여 재해석하고, 서포트 벡터 머신(Support Vector Machine: 이하 SVM)을 이용한 이진 분류를 통하여 효과적이며 실시간으로 얼굴을 검출할 수 있는 방법론을 제안한다. 얼굴과 얼굴이 아닌 영상들로 학습데이터를 구성하여, 이 영상들로부터 Haar-like 특징값들을 추출한다. 추출된 특징 값들은 약 40개의 특징 값들 중에 얼굴과 얼굴이 아닌 영역에 대하여 관별 능력이 우수한 특징값들은 PCA를 이용하여 재해석하고 유용한 특징들을 선별한다. 선별된 특징들을 SVM의 입력으로 사용하여 최종 분류기를 학습 및 구성한다. 제안하는 분류기는 학습데이터 집단의 구성을 크게 영향을 받지 않고, 소량의 학습데이터만으로도 90.1%의 만족함만한 얼굴 검출율을 보여주며, 320×240 크기의 영상에 대하여 실시간 얼굴 검출에 사용 가능한 초당 8프레임의 처리속도를 보여주었다.

Effective Face Detection Using Principle Component Analysis and Support Vector Machine

Byoung-Doo Kang*, Oh-Hwa Kwon**, Chi-Young Seong***, Jae-Deok Jeon****,
Jae-Sung Eom*****; Jong-Ho Kim******, Jae-Won Lee*******; Sang-Kyoon Kim********

ABSTRACT

We present an effective and real-time face detection method based on Principal Component Analysis (PCA) and Support Vector Machines (SVMs). We extract simple Haar-like features from training images that consist of face and non-face images, reinterpret the features with PCA, and select useful ones from the large number of extracted features. With the selected features, we construct a face detector using an SVM appropriate for binary classification. The face detector is not affected by the size of a training dataset in a significant way, so that it showed 90.1% detection rates with a small quantity of training data; it can process 8 frames per second for 320×240 pixel images. This is an acceptable processing time for a real-time system.

Key words: Face Detection(얼굴 검출), PCA(주성분 분석), SVM(서포트 벡터 머신)

※ 교신저자(Corresponding Author) : 강병두, 주소 : 경남 김해시 여동면 607번지(051-746-2132), 전화 : 055/322-3309, FAX : 055/322-3106, E-mail : dcewryan@nctgo.com
접수일 : 2006년 3월 25일, 원고일 : 2006년 9월 21일
* 준회원, 인제대학교 전산학과 대학원
** 준회원, DIT(주) Vision 주임
(E-mail : cujin13@lycos.co.kr)
*** 준회원, 에비테크노(주) Vision 개발그룹 연구원
(E-mail : cy1224@gmail.com)
**** 준회원, 인제대학교 컴퓨터공학부
(E-mail : zcesupc80@nate.com)

***** 준회원, 인제대학교 전산학과 대학원
(E-mail : whitey22@nate.com)

****** 준회원, 인제대학교 전산학과 대학원
(E-mail : luckykh1920@nate.com)

******* 준회원, 인제대학교 전산학과 대학원
(E-mail : jwviolet@nate.com)

******** 준회원, 인제대학교 컴퓨터공학부 부교수
(E-mail : skkim@cs.inje.ac.kr)

※ 본 논문은 2005년도 인제대학교 학술연구조성비 보조에 의한 것임
1. 서론

최근 컴퓨터를 이용한 개인 정보 보호 및 신분 확인을 위한 기술로 개인의 고유한 인체 특징을 이용한 생체 인식 기술이 많이 연구되고 있다. 이를 위하여 지문 인식, 화인 인식, 전자 태그(RFID : Radio Frequency Identification) 등 다양한 센싱 기술들이 연구 및 개발되어 왔다. 그러나 이러한 기계적 센싱 기반 기술들은 장비의 쓰레기이나 특수한 행위가 요구되어 사용자에게 거부감을 줄 수 있다. 하지만 얼굴 인식은 사용자에게 거부감이 적은 시각정보를 이용하기 때문에 자연세기적인 인식 기술로서 많은 연구가 이루어지고 있다.

얼굴 인식은 사용자 식별을 통한 보안 시스템, 특정 사용자 인식 및 추적을 통한 사용자 행위 인식 등 매우 평범한 분야에 걸쳐 응용되고 있다. 이러한 얼굴 인식의 중요한 것 단계는 영상에서 얼굴이 어디에 위치하고 있는지를 찾아내는 얼굴 검출 단계가 필수적이다. 최적 실험실 얼굴 인식은 목적으로 하는 다양한 연구가 이루어지고 있으며, 이에 따라 실험실 응용에서의 얼굴 인식을 위한 다양한 얼굴 검출 방법론이 활발히 연구되고 있다.

얼굴 검출은 영상 안에 얼굴이 존재하는지 여부를 결정하고 얼굴이 존재한다면 얼굴의 정확한 위치와 크기를 파악하는 것이다. 이를 위하여 패턴 인식 알고리즘들을 사용하여 다양한 실험이 이루어졌다. 실제 응용에서 얼굴은 색상, 크기, 형태 등의 개인적인 차이와 표정 변화, 머리 모양, 안경 등의 부착물 착용 및 화장을 다양한 형태 변화가 있고, 조명 변화와 복잡한 배경 등의 외적 환경에 따른 변화 때문에 여전히 많은 문제점을 가지고 있다. 이러한 얼굴 검출의 성공을 거치하는 요인들을 해결하기 위한 다양한 방법들이 연구되어 왔으며, 크게 얼굴의 특징에 기반을 둔 방법과 얼굴의 전체적인 정보를 이용하는 방법으로 불 수 있다.

위와 같이 얼굴을 정확히 검출하면서도 실시간 시스템에 적용할 수 있도록 속도 또한 빠른 방법론이 연구되어왔다. 최근 Viola와 Jones[10]는 검출에 사용되는 복잡한 연산을 줄이고, 동시에 높은 검출 성
능을 보장하는 실시간 시스템을 구축하기 위하여 AdaBoost 알고리즘을 이용한 얼굴 검출 방법인 제안하였다. 이들은 이 방법을 통하여 384×288의 영상에서 초당 14 프레임을 처리할 수 있는 빠른 속도와 얼굴 검출의 높은 성능을 보여주기 위한 시스템을 제시하였다. 그러나 얼굴과 입가이 아닌 영역에 대한 학습을 위하여 이론적인 데이터 집합이 필요하며, 대용량 학습 데이터를 수집했을 시 높은 성능을 보여주지만 추가 데이터에 대하여 시스템 전체를 재학습 및 구성해야한다는 단점을 가지고 있다.

본 논문의 구성은 다음과 같다. 먼저 2장에서는 제안하는 얼굴 검출 시스템의 PCA를 이용한 유용한 Haar-like 특징 추출과 SVM 분류기의 적용에 대해 설명한다. 3장에서는 제안된 기법의 특징값 기수와 학습데이터 크기에 따른 실험과 관련 연구와의 처리 속도 비교 실험을 통하여 성능을 분석한다. 마지막으로 4장에서는 결론 및 향후 연구에 대해 기술한다.

2. 얼굴검출 시스템

본 논문에서 제안하는 PCA와 SVM을 이용한 효
과 배경을 잘 구분할 수 있는 유용한 정보를 제공하고 분류의 정확성을 높였다.

다섯 종류의 Haar-like 특징은 24x24 크기로 구성된 학습 데이터 영상에 적용하여 모든 가능한 초기 특징 집합을 이루게 된다. 각 타입별 가능한 특징들의 수를 모두 합하면 162,336개가 된다.

그림 3은 PCA를 이용하여 특정 값들을 분석하기 위하여 사용한 100개의 얼굴과 100개의 얼굴이 아닌 영상들을 다. 특히 얼굴이 아닌 데이터 구성에서는 다양한 배경과 인체의 일부분을 설명하여 추가 사용함에 따라 탐지 성능을 높였다.

유용한 특징값들의 선택에 있어서, PCA를 이용하여 각각에 같은 초기로 이상값과 같은 극단 값을 가지는 유용하지 않은 특징값들을 제거하였다.
1. 얼굴의 마감구조를 따르기 때문에 특정값이 0에 가까운 경우 (그림 4. a).
2. 특징값의 크기가 450 백셀 이상 되는 경우 (그림 4. b).
3. 특징값의 크기가 18 백셀 이하인 경우 (그림 4. c).

이와 같이 유용하지 않은 특징들은 그림 4와 같다.

위와 같은 조건을 가지는 유용하지 않은 특징들은 얼굴을 잘 설명할 수 있는 눈, 띠, 입과 같은 절감을 제대로 설명할 수 없다. 이렇게 구성되는 Haar-like 특징들의 개수는 표 1과 같다.

학습 데이터 집합에서 162,336개의 Haar-like 특징값들이 중에서 의미 없는 58,013개의 특징들을 제외한 104,323개의 특징들을 PCA에 적용한다. PCA에 사용한 특정들은 그림 3과 같은 200개의 영상에 적용하여 식 (1)과 같은 특정값들을 갖는 벡터로 표현할 수 있다. 이때 L값은 104,323개의 Haar-like 특정값들을 나타내고 M값은 200개의 실험에서 사용한 얼굴영상과 얼굴이 아닌 영상을 나타낸다.

\[
\Gamma = \begin{bmatrix}
\Gamma_{11} & \Gamma_{12} & \cdots & \Gamma_{1M} \\
\Gamma_{21} & \Gamma_{22} & \cdots & \Gamma_{2M} \\
\vdots & \vdots & \ddots & \vdots \\
\Gamma_{L1} & \Gamma_{L2} & \cdots & \Gamma_{LM}
\end{bmatrix}
\] (1)

그림 3과 같은 200개의 학습영상에 대한 평균 특성값은 식 (2)에 의해서 구할 수 있다.

\[
\varphi_j = \frac{1}{M} \sum_{k=1}^{M} \Gamma_{kj}
\] (2)

편차 벡터는 식 (3)을 이용하여 식 (4)로 표현한다.

\[
\phi_{ij} = \Gamma_{ij} - \varphi_j, \quad 1 \leq i \leq L, 1 \leq j \leq M
\] (3)

\[
A = \begin{bmatrix}
\varphi_{11} & \varphi_{12} & \cdots & \varphi_{1M} \\
\varphi_{21} & \varphi_{22} & \cdots & \varphi_{2M} \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{L1} & \varphi_{L2} & \cdots & \varphi_{LM}
\end{bmatrix} = [\varphi_1, \varphi_2, \cdots, \varphi_M]
\] (4)

\[
\lambda_k = \frac{1}{M} \left(u_k^T \phi \right)^2
\] (5)

\(k\)번째 벡터 \(u_k\)는 정규 적절 성질을 만족하는 식 (6)을 조건으로 하여, 식 (5)에서 \(\lambda_k\)의 최대값을 구한다.

\[
u_k^T u_k = \lambda_k = \begin{cases} 1, & \text{if } l = k \\ 0, & \text{otherwise} \end{cases}
\] (6)

공분산 행렬 C에 대한 벡터 \(u_k\)는 고유벡터(eigen vector)이고 \(\lambda_k\)는 고유값(eigen value)이다.

<table>
<thead>
<tr>
<th>표 1. 종류별 Haar-like 특징들의 개수</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>가용한 모든 Haar-like 특징들의 개수</td>
</tr>
<tr>
<td>유용하지 않은 Haar-like 특징들의 개수</td>
</tr>
<tr>
<td>PCA에 적용한 Haar-like 특징들의 개수</td>
</tr>
</tbody>
</table>
\[C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T \]
\[= AA^T \]

이것은 104,323×104,323 차원의 공분산 행렬 \(C \)를 이용하여 104,323개의 고유벡터와 고유값을 계산하기 위한 방법이다. 따라서 식 (8)과 같이 \(A^T A \)에 대한 고유벡터 \(v_j \)를 고려하면 200×200 차원에서 고유벡터와 고유값을 구할 수 있다.

\[A^T A v_j = \mu_j v_j \] (8)

양변에 \(A \)를 곱하면 식 (9)과 같다.

\[AA^T A v_j = \mu_j A v_j \] (9)

여기서 \(A v_j \)는 \(C = AA^T \)에 대한 고유벡터이다.

\[u_l = \sum_{i=1}^{M} v_{il} \Phi_i^T, \quad l = 1, \ldots, L \] (10)

이러한 벡터들은 \(u_l \)로 구성된 각각의 Haar-like 특징 값의 200개 학습 집합에 대한 선형 조합으로 구성된다[11,12].

본 논문에서는 실행 비율이 90%이상이 되는 12개의 주성분을 사용하였다. 12개의 주성분을 이용하여 104,323개의 Haar-like 특징들 중에서 얼굴과 얼굴이 아닌 영상을 잘 구별하는 특징들 288개를 선택한다.

그림 6은 PCA를 이용하여 선별된 특징들이

d. 24×24로 정규화된 각각의 학습 영상은 선택된 유용한 특징들에 대응하는 288차원의 특징값으로 변환된다. 구성된 288차원의 학습데이터를 SVM 학습을 위한 입력 값으로 사용한다.

2.2 SVM 분류기

Support Vector Machine은 1995년에 Vapnik에 의해 제안되었고 VC(Vapnik–Chervonenkis) 이론에 근간을 두고 있으며, 뛰어난 일반화 성능을 보여준다. 구조적 에러를 최소화하는 기법으로 기존의 경험적 에러 최소화 기법인 다층신경망과 비교하여 학습에 필요한 파라미터의 일부가 자동적으로 결정된다[13].
본 논문에서 제안하는 PCA와 SVM을 이용한 얼굴검출기의 학습데이터 생성과 검출과정은 그림 5와 같다. 간단한 Haar-like 특징들로부터 PCA를 이용하여 유용한 특징들을 선택한다. 선택된 특징들은 사용하여 그림 7과 같은 학습 이미지를 288개 입력차원에 대한 입력값으로 변환한다. 변환된 입력값들은 SVM 분류기의 학습을 위한 입력값으로 사용된다. 학습이 완료된 SVM 분류기는 입력 영상에서 얼굴과 배경을 분류한다.

얼굴과 얼굴이 아닌 부분을 분류하기 위하여 인터넷, 캠 영상, 알려진 얼굴 영상 데이터베이스 등 다양한 자료로부터 학습 영상을 수집 및 구성하였다. 다양한 배경에 대한 잘못된 분류를 줄이기 위해 얼굴이 아닌 영상은 얼굴 영상의 2배로 구성하였다. 그림 7은 얼굴검출기를 위한 학습 및 실험 영상의 일부분이다.

다양한 크기의 얼굴을 검출하기 위해 학습 영상의 크기를 다양하게 하는 방법과 다양한 크기의 입력 영상을 학습 영상의 크기로 정규화 시키는 방법이 있다. 영상의 크기를 다양하게 하여 학습시키는 방법은 학습 영상에 대한 많은 표본 영상을 필요로 한다. 따라서 실시간 검출을 위해 입력 영상의 크기를 24×24로 정규화 하는 방법을 사용하였다.

3. 실험 및 결과분석

본 논문에서 제안한 방법을 실험하기 위하여 2.0GHz Pentium IV PC, Windows OS 환경에서 Visual C++로 구현 및 테스트하였다. 구현한 테스트 시스템을 이용하여 학습 데이터의 양에 따른 검출 성능과 속도를 실험하고, 그 결과를 분석하였다. 그리고 CMU 실험 데이터를 사용하여 관련 연구와의 검출 성능을 비교하였다. 그림 8은 학습된 SVM 분류기를 이용하여 얼굴을 검출한 예이다.

학습데이터의 양에 영향을 주는 학습 영상의 수와 학습에 사용된 특징의 수에 따른 얼굴 검출 성능을 실험하였다. 실험 영상으로는 전체 학습 영상 중 학습에 포함되지 않은 얼굴 영상 1000장과 얼굴이 아닌 영상 1000장을 실험에 사용하였다. 그림 9는 100, 200, 500, 1000개의 학습 영상을 각각 사용했을 때의 얼굴 검출 성능 실험 결과이다. 실험 결과와 같이 소량의 학습 영상만으로도 좋은 검출 성능을 보여주었다.

그림 10은 얼굴 탐지에 사용된 100, 200, 500개의 Haar-like 특징값들의 개수에 따른 얼굴 검출 결과를 나타낸다. 100개의 특징값만으로도 94%라는 좋은 검출 결과를 얻었다.

그림 7. 영역을 분류하기 위한 학습 영상: (a) 얼굴 영상 2,000개, (b) 얼굴이 아닌 영상 4,000개의 일부분
제안하는 시스템은 실험 결과와 같이 소량의 학습 데이터만으로도 좋은 영유 검출률을 보여 주었다. 또한 영유 검출에 걸리는 처리 속도는 Viola와 Jones의 방법보다는 다소 높지만, 320×240 영상에 대하여 초당 8프레임이라는 좋은 검출 속도를 보여주었다.

3.1 관련 연구와의 비교 실험

본 논문에서는 위에서의 실험 결과와 같이 소량의 학습 데이터만으로도 효과적인 영유 검출 방법론을 제안하였다. 관련 연구와의 비교를 위하여 서론에서 언급한 영유 영상 기반 방법들과 CMU 실험 데이터를 이용하여 검출 성능을 비교 실험해보고 결과는 표 2와 같다.

관련 연구와의 속도 비교는 각기 다른 연구에서

<table>
<thead>
<tr>
<th>영유 검출기</th>
<th>농진 영유 개수/총 영유 개수</th>
<th>검출율</th>
<th>탐지 오류</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feraud-et[5]</td>
<td>73/507</td>
<td>85.6%</td>
<td>8</td>
</tr>
<tr>
<td>Garcia-Delakis[7]</td>
<td>49/507</td>
<td>90.3%</td>
<td>8</td>
</tr>
<tr>
<td>Rowley-Baltija-Kanade[8]</td>
<td>83/507</td>
<td>83.6%</td>
<td>10</td>
</tr>
<tr>
<td>Viola-Jones[10]</td>
<td>96/507</td>
<td>81.1%</td>
<td>10</td>
</tr>
<tr>
<td>PCA와 SVM을 이용한 영유검출기</td>
<td>50/507</td>
<td>90.1%</td>
<td>8</td>
</tr>
</tbody>
</table>

| 100개의 특정값을 사용 | 200개의 특정값을 사용 | 500개의 특정값을 사용 |

그림 8. 영유 검출 예

그림 9. 학습 데이터량에 따른 영유 검출 성능 실험 결과

그림 10. 특정값들의 개수에 따른 영유 검출 성능 실험 결과

표 2. 관련 연구와의 영유 검출 결과 비교 (CMU 실험 데이터)
<table>
<thead>
<tr>
<th>업무 검출기</th>
<th>처리시간(초)</th>
<th>실험 환경</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feraud-et[5]</td>
<td>1.27s</td>
<td>CMU 실험 데이터의 평균 처리 속도</td>
</tr>
<tr>
<td>Garcia-Delakis[7]</td>
<td>0.25s</td>
<td>펜티엄 IV, 1.6GHz</td>
</tr>
<tr>
<td>Rowley-Baluja-Kanade[8]</td>
<td>7.2s</td>
<td>R4400 SGI Indigo 2, 200MHz</td>
</tr>
<tr>
<td>Viola-Jones[10]</td>
<td>0.067s</td>
<td>펜티엄 III, 700MHz</td>
</tr>
<tr>
<td>Using PCA and SVM</td>
<td>0.12s</td>
<td>펜티엄 IV, 2.0GHz</td>
</tr>
</tbody>
</table>

제시된 알고리즘의 동일한 시스템 환경에서 구현되어 테스트 될 수 없으므로 정확한 비교는 될 수 없으나, 각 연구에서 제시한 결과와 더불어 본 논문에서 제안한 시스템의 실험 결과는 표 3과 같다.
본 논문에서 제안한 PCA와 SVM을 이용한 효과적인얼굴 검출기는 90.1%의 탐지율과 1프레임당 0.12초라는 좋은 검출 속도를 얻었다. 이것은 Viola와 Jones가 제안한 방법보다는 검출율은 높고 Garcia와 Delakis가 제안한 방법보다는 검출속도가 빠른 반면 아니라 탐지 오류는 Viola와 Jones의 결과보다는 낮은 8개로 좋은 검출율과 처리 속도를 나타낸다.

4. 결론 및 향후 연구

본 논문에서 제안하는 얼굴 검출기는 높은 검출률을 보상함과 동시에 학습 데이터량에 영향을 받지 않는 효과적인 검출기를 구성하였다. 소량의 학습 데이터를 사용하므로 시스템 구축에 따른 노력과 시간이 줄일 수 있었다. 빠른 처리 속도를 위해 Viola와 Jones가 사용했던 심플한 Haar-like 특성을 사용하였으며, 100개의 학습 데이터만으로도 모집단의 특성을 충분히 반영할 수 있도록 PCA를 이용한 데이터 분석과 이전 분류 문제에 투어난 성능을 보여주는 SVM을 사용하여 90.1%의 얼굴 검출율과 초단 8프레임의 처리 속도를 얻었다.
본 논문에서 제안한 방법은 효과적으로 얼굴을 검출할 수 있으나, 실제 응용에 적용하기 위해서는 얼굴 검출에 추가기술을 추가하여 보다 높은 얼굴 검출률과 처리 속도의 개선이 필요하다. 또한 정면 얼굴이 아닌 여러 측면 얼굴에 대한 검출을 위해 여러 개의 카메라를 이용한 3D기술을 적용한다면 스마트 홈(Smart Home)과 같은 다양한 응용분야에 활용될 수 있을 것이다.

참고 문헌

성 치 영
2005년 인제대학교 컴퓨터공학부 졸업(공학사)
2005년~현재 인제대학교 대학원 전산학과 석사과정
2006년 8월~현재 에비테크노(주) Vision 개발그룹 근무
관심분야: 패턴인식, 머신비전, 정보보호

전 재 덕
1999년~현재 인제대학교 컴퓨터학부 졸업
관심분야: 정보검색, 정보보호, 패턴인식, 컴퓨터비전

염 재 성
2006년 인제대학교 정보컴퓨터학부 졸업(정보컴퓨터학사)
2006년~현재 인제대학교 대학원 전산학과 석사과정
관심분야: 컴퓨터비전, 스테레오비전, 스테레오경정

김 종 후
2002년 인제대학교 정보컴퓨터학부 졸업(정보컴퓨터학사)
2004년 인제대학교 대학원 전산학과 졸업(전산학석사)
2004년~현재 인제대학교 대학원 전산학과 박사과정
관심분야: 정보검색, 패턴인식, 컴퓨터비전

이 재 원
2000년 인제대학교 전산학과 졸업(학사)
2002년 인제대학교 대학원 전산학과 졸업(전산학석사)
2003년~현재 인제대학교 대학원 전산학과 박사과정
관심분야: 정보검색, 패턴인식
김 상 귤
1991년 경북대학교 통계학과 졸업(학사)
1994년 경북대학교 대학원 컴퓨터공학과 졸업(석사)
1996년 경북대학교 대학원 컴퓨터공학과 졸업(박사)
1996년~현재 인제대학교 컴퓨터공학부

공학부 부교수

관심분야: 패턴인식, 정보검색, 정보보호