DOI QR코드

DOI QR Code

Cytotoxic Activities of Red Algae Collected from Jeju Island Against Four Tumor Cell Lines

  • Kim, Kil-Nam (Faculty of Applied Marine Science, Cheju National University) ;
  • Lee, Ki-Wan (Faculty of Applied Marine Science, Cheju National University) ;
  • Song, Choon-Bok (Faculty of Applied Marine Science, Cheju National University) ;
  • Ahn, Chang-Bum (Division of Food Technology and Nutrition, Chonnam National Univeristy) ;
  • Jeon, You-Jin (Faculty of Applied Marine Science, Cheju National University)
  • Published : 2006.09.01

Abstract

Methanolic and aqueous extracts of 26 red algae species collected from Jeju Island coast were prepared at a high $(70^{\circ}C)$ and a room temperature $(20^{\circ}C)$ and were examined for their cytotoxic activity against 4 tumor cell lines: U-937 (human monoblastoid leukemia cell line), HL-60 (human promyelocytic leukemia cell line), B-16 (murine melanoma cell line) and HeLa (woman cervical carcinoma cell line). $20^{\circ}C$ methanolic extract of Polysiphonia japonica showed cytotoxic activity of over 50% against U-937, HL-60 and B-16 cells. On the other hand, the $20^{\circ}C$ aqueous extract of Scinaia okamurae and $70^{\circ}C$ aqueous extract of Chondrus crispus showed cell growth inhibition activity of more than 50% against HL-60 and B-16 cells. The highest cytotoxic activity was observed in the $20^{\circ}C$ aqueous extract of Scinaia okamurae against B-16 cells (80.55%).

Keywords

References

  1. Kufe DW, Pollock RE, Weichselbaum RR, Bast Jr RC, Gansier TS, Holland JF. 2003. Cancer medicine. 6th ed.  American Cancer Society Inc. and B.C. Decker, Inc., Hamiton, Ontario
  2. Lowe SW, Lin AW. 2000. Apoptosis in cancer. Carcinogenesis 21: 485-495 https://doi.org/10.1093/carcin/21.3.485
  3. Yang LL, Lee CY, Yen KY. 2000. Induction of apoptosis by hydrolysable tannins from Eugenia jambos L. on human leukemia cells. Cancer lett 157: 65-75 https://doi.org/10.1016/S0304-3835(00)00477-8
  4. Kashiwagi M, Mynderse JS, Moore RE, Norton TR. 1980. Antineoplastic evaluation of pacific basin marine algae. J Pharm Sci 69: 735-738 https://doi.org/10.1002/jps.2600690636
  5. Gonzalez AG, Darias V, Estevez E. 1982. Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae. Planta Med 44: 44-46 https://doi.org/10.1055/s-2007-971399
  6. Kosovel V, Avanzini A, Scarcia V, Furlani A. 1988. Algae as possible sources of antitumoral agents. Preliminary evaluation of the in vitro cytostatic activity of crude extracts. Pharmacol Res Commun 20: 27-31
  7. Glombitza KW, Koch M. 1989. Secondary metabolites of pharmaceutical potential. In Algal and Cyanobacterial Biotechnology. Cresswell RC, Rees TA, Shah N, eds. Longman Scientific & Technical, Harlow, England. p 161-238
  8. Yamamoto I, Takahashi M, Tamura E, Maruyama M. 1982. Antitumor activity of crude extracts from edible marine algae against L-1219 leukemia. Bot Mar 25: 455-457 https://doi.org/10.1515/botm.1982.25.9.455
  9. Noda H, Amano H, Arashima K, Hashimoto S, Nisizawa K. 1989. Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi 55: 1265- 1271 https://doi.org/10.2331/suisan.55.1265
  10. Jolles B, Remington M, Andrews PS. 1963. Effects of sulphated degraded laminarin on experimental tumor growth. Br J Cancer 17: 109-115 https://doi.org/10.1038/bjc.1963.16
  11. Yamamoto I, Nagumo T, Yagi K, Tominaga H, Aoki M. 1974. Antitumor effect of seaweeds. Jpn J Exp Med 44: 543-546
  12. Mizukoshi S, Matsuoka S, Nakamura K, Katou H, Noda H. 1992. Search for bioactive substances from marine algae. Bull Faculty Biosources Mie Univ 8: 27-34
  13. Siriwardhana N, Lee KW, Kim SH, Ha JW, Jeon YJ. 2003. Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Tech Int 9: 339-346 https://doi.org/10.1177/1082013203039014
  14. Hiroishi S, Sugie K, Yoshida T, morimoto J, Taniguchi Y, Imai S, Kurebayashi J. 2001. Antitumor effects of Marginisporum crassissimum (Rhodophycere), a marine red alga. Cancer Lett 167: 145-150 https://doi.org/10.1016/S0304-3835(01)00460-8
  15. Siddhanta AK, Shanmugam M, Mody KH, Goswami AM, Ramavat BK. 1999. Sulphated polysaccharides of Codium dwarkense Boergs. from the west coast of India: chemical composition and blood anticoagulant activity. Int J Biol Macromol 26: 151-154 https://doi.org/10.1016/S0141-8130(99)00079-3
  16. Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK. 2003. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62: 1221-1224 https://doi.org/10.1016/S0031-9422(03)00004-9
  17. Abourriche A, Charrouf M, Berrada M, Bennamara A, Chaib N, Francisco C. 1999. Antimicrobial activities and cytotoxicity of the brown alga Cystoseira tamariscifolia. Fitoterapia 70: 611-614 https://doi.org/10.1016/S0367-326X(99)00088-X
  18. Okai Y, Okai KH. 1997. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori). Int J Immunopharmacol 19: 355-358 https://doi.org/10.1016/S0192-0561(97)00070-2
  19. Kim KN, Lee KW, Song CB, Jeon YJ. 2006. Cytotoxic activities of green and brown seaweeds collected from Jeju Island against four tumor cell lines. J Food Sci Nutr 11: 17-24 https://doi.org/10.3746/jfn.2006.11.1.017
  20. Zhou G, Sun Y, Xin H, Zhang Y, Li Z, Xu Z. 2004. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res 50: 47-53 https://doi.org/10.1016/j.phrs.2003.12.002
  21. Zhou G, Sheng W, Yao W, Wang C. 2006. Effect of low molecular ${\lambda}$-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. Pharmacol Res 59: 129-134
  22. Yamamoto I, Maruyama H. 1985. Effect of dietary seaweed preparation on 1,2-dimethylhydrazine-induced intestinal carcinogenesis in rats. Cancer Lett 26: 241-251 https://doi.org/10.1016/0304-3835(85)90047-3
  23. Naasani I, Seimiya H, Tsuruo T. 1998. Telomerase inhibition telomere shortening, and senescence of cancer cells by tea catechins. Biochem Biophy Res Commun 249: 391-396 https://doi.org/10.1006/bbrc.1998.9075
  24. Fukuyama Y, Miura I, Kinzyo Z, Mori H, Kido M, Nakayama Y, Takahashi M, Ochi M. 1985. Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on ${\alpha}_2$-macroglobulin from the brown alga Ecklonia kurome OKAMURA. Chem Lett 6: 739-742
  25. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Kido M, Mori H, Nakayama Y, Takahashi M. 1989. Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem Pharm Bull 37: 349-353 https://doi.org/10.1248/cpb.37.349
  26. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. 1989. Anti-plasmin inhibitor. V. Structure of novel dimeric eckols isolated from the brown alga Ecklonia kurome OKAMURA. Chem Pharm Bull 37: 2438-2440 https://doi.org/10.1248/cpb.37.2438
  27. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M. 1990. Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome OKAMURA. Chem Pharm Bull 38: 133-135 https://doi.org/10.1248/cpb.38.133
  28. Nakayama Y, Takahashi M, Fukuyama Y, Kinzyo Z. 1989. An anti-plasmin Inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA. Agric Biol Chem 63: 3025-3030
  29. Nakamura T, Nagayama K, Uchida K, Tanaka R. 1996. Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish Sci 62: 923-926 https://doi.org/10.2331/fishsci.62.923
  30. Altena A, Steinberg D. 1992. Are differences in the responses between North American and Australian marine herbivores to phlorotannins due to differences in phlorotannin structure. Biochem Syst Ecol 20: 493-499 https://doi.org/10.1016/0305-1978(92)90003-V
  31. Hay ME, Fenical W. 1988. Marine plant-herbivore interactions: the ecology of chemical defence. Annu Rev Ecol Syst 19: 111-145 https://doi.org/10.1146/annurev.es.19.110188.000551
  32. Boettcher A, Targett M. 1993. Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74: 891-903 https://doi.org/10.2307/1940814
  33. Targett M, Boettcher A, Targett E, Vrolijk H. 1995. Tropical marine herbivore assimilation of phenolicrich plants. Oecologia 103: 170-179 https://doi.org/10.1007/BF00329077
  34. Steinberg PD. 1992. Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In Ecological Roles of Marine Natural Prodacts. Paul VJ, ed. Cornell Univ. Press, Ithaca. p 51-92
  35. Jennings JG, Steinberg PD. 1997. Phlorotannins versus other factors affecting epiphyte abundance on the kelp Ecklonia radiata. Oecologia 109: 461-473 https://doi.org/10.1007/s004420050106
  36. Okai Y, Higashi-Okai K, Yano Y, Otani S. 1996. Identification of antimutagenic substances in an extract of edible red alga, Porphyra tenera (Asakusanori). Cancer Lett 100: 235-240 https://doi.org/10.1016/0304-3835(95)04101-X
  37. Cho EJ, Rhee SH, Park KY. 1997. Antimutagenic and cancer cell growth inhibitory effects of seaweeds. J Food Sci Nutr 2: 348-353

Cited by

  1. An Ethanol Extract Derived from Bonnemaisonia hamifera Scavenges Ultraviolet B (UVB) Radiation-Induced Reactive Oxygen Species and Attenuates UVB-Induced Cell Damage in Human Keratinocytes vol.10, pp.12, 2012, https://doi.org/10.3390/md10122826
  2. Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava on the U-937 cell line vol.21, pp.3, 2009, https://doi.org/10.1007/s10811-008-9368-7