DOI QR코드

DOI QR Code

Epitaxial Growth of CoSi2 Layer on (100)Si Substrate using CoNx Interlayer deposited by Reactive Sputtering

반응성 스퍼터링법으로 증착된 CoNx 중간층을 이용한 (100)Si 기판 위에서의 에피택셜 CoSi2 성장 연구

  • Lee, Seung-Ryul (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sun-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung-Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 이승렬 (한국과학기술원 신소재공학과) ;
  • 김선일 (한국과학기술원 신소재공학과) ;
  • 안병태 (한국과학기술원 신소재공학과)
  • Published : 2006.01.27

Abstract

A novel method was proposed to grow an epitaxial $CoSi_2$ on (100)Si substrate. A $CoN_x$ interlayer was deposited by reactive sputtering of Co in an Ar+$N_2$ flow. From the Ti/Co/$CoN_x$/Si structure, a uniform and thin $CoSi_2$ layer was epitaxially grown on (100)Si by annealing above $700^{\circ}C$. Two amorphous layers were found at the $CoN_x$/Si interface, where the top layer has a silicon nitride (Si-N) bonding state with some Co content and the bottom layer has a Co-Si intermixing state. The SiNx amorphous layer seems to play a critical role of suppressing the diffusion of Co into Si substrate for the direct formation of epitaxial $CoSi_2$.

Keywords

References

  1. C. W. T. Bulle Lieuwma, A. H. van Ommen, J. Homstra and N. A. M. Aussems, J. Appl. Phys., 71, 2211 (1992) https://doi.org/10.1063/1.351119
  2. R. T. Tung and F. Schrey, Appl. Phys. Lett., 54, 852 (1989) https://doi.org/10.1063/1.101416
  3. A. R. Chapman, C. C. Wei, D. A. Bell, S. Aur, G. A. Brown and R. A. Haken, IEDM Tech. Dig., 489 (1991)
  4. J. R. Jimenez, L. M. Hsiung, K. Rajan, L. J. Schowalter, S. Hashimoto, R. D. Thomson and S. S. Iyer, Appl. Phys. Lett., 57, 2811 (1990) https://doi.org/10.1063/1.104201
  5. K. Rajan, L. M. Hsiung, J. R. Jimenez, L. J. Schowalter, K. V. Ramanathan, R. D. Thomson and S. S. Iyer, J. Appl. Phys. 70, 4853 (1991) https://doi.org/10.1063/1.349026
  6. R. T. Tung, Mater. Chem. Phys. 32, 107 (1992) https://doi.org/10.1016/0254-0584(92)90268-D
  7. A. E. White, K. T. Short, R. C. Dynes, J. P. Garno and J. M. Gibson, Appl. Phys. Lett, 50, 95 (1987) https://doi.org/10.1063/1.97830
  8. M. L. A. Dass, D. B. Fraser and C. S. Wei, Appl. Phys, Lett., 58, 1308 (1991) https://doi.org/10.1063/1.104345
  9. R. T. Tung, Appl. Phys. Lett., 68, 3461 (1996) https://doi.org/10.1063/1.115793
  10. H. S. Rhee, T. W. Jang and B. T. Ahn, Appl. Phys. Lett., 74, 1003 (1999) https://doi.org/10.1063/1.123436
  11. H. S. Rhee and B. T. Ahn, Appl. Phys. Lett., 74, 3176 (1999) https://doi.org/10.1063/1.124067
  12. JCPDS 41-0943
  13. JCPDS 06-0691
  14. P. Ruterana, P. Houdy and P. Boher, J. Appl. Phys., 68, 1033 (1990) https://doi.org/10.1063/1.346741