DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Al-Ni-Mm-(Cu, Fe) Alloys Hot-Extruded from Gas-Atomized Powders

가스분사 분말로부터 고온 압출된 Al-Ni-Mm-(Cu, Fe)합금들의 미세구조 및 기계적 성질

  • Kim, Hye-Sung (Dept. of Materials Engineering, Miryang National University)
  • 김혜성 (밀양대학교 신소재공학부)
  • Published : 2006.02.27

Abstract

The effects of Cu and Fe additions on the thermal stability, microstructure and mechanical properties of $Al_{85}-Ni_{8.5}-Mm_{6.5},\;Al_{84}-Ni_{8.5}-Mm_{6.5}Cu_1,\;Al_{84}-Ni_{8.5}-M_{m6.5}Fe_1$ alloys, manufactured by gas atomization, degassing and hot-extrusion were investigated. Gas atomization, with a wide super-cooled liquid region, allowed the alloy powders to exhibit varying microstructure depending primarily on the powder size and composition. Al hotextruded alloys consisted of homogeneously-distributed fine-grained fcc-Al matrix and intermetallic compounds. A substitution of 1 at.% Al by Cu increased the thermal stability of the amorphous phase and produced alloy microstructure with smaller fcc-Al grains. On the other hand, the same substitution of 1 at.% Al by Fe decreased the stability of the amorphous phase and produced larger fcc-Al grains. The formation of intermetallic compounds such as $Al_3Ni,\;Al_{11}Ce_3\;and\;Al_{11}La_3$ was suppressed by the addition of Cu or Fe. Among the three alloys examined, the highest Vickers hardness and compressive strength were obtained for $Al_{84}-Ni_{8.5}-M_{m6.5}Cu_1$ alloy, and related to the finest fcc-Al grain size attained from increased thermal stability with Cu addition.

Keywords

References

  1. A. Inoue, H. Kimura, and S. I. Yamaura, Metals and Materials International, 9, 527 (2003) https://doi.org/10.1007/BF03027251
  2. A. Inoue, M. Yamamoto, H. M. Kimura and T. Masumoto, J. Mater. Sci. Lett., 6, 194 (1987) https://doi.org/10.1007/BF01728983
  3. Y. Yoshizawa, S. Oguma and K. Yamaauchi, J. Appl. Phys, 64, 6044 (1988) https://doi.org/10.1063/1.342149
  4. K. Suzuki, N. Kataoka, A. Inoue and T. Masumoto, Mater. Trans. JlM, 31, 743 (1990) https://doi.org/10.2320/matertrans1989.31.743
  5. Y. H. Kim, A. Inoue and T. Masumoto, Mater. Trans. JIM, 31, 331 (1991)
  6. Z. C. Zhong, X. Y. Jiang and A. L. Greer, Mater. Sci. Eng., A226-228, 531 (1997) https://doi.org/10.1016/S0921-5093(97)80062-7
  7. H. S. Kim and S. I. Hong, Acta Mater., 47, 2059 (1999) https://doi.org/10.1016/S1359-6454(99)00088-9
  8. S. J. Hong, H. S. Kim, C. Suryanarayana and B. S. Chun, Mater. Tran. Tech., 19, 966 (2003) https://doi.org/10.1179/026708303225003036
  9. S. J. Hong, C. Suryanarayana and B. S. Chun, Scr. Mater. 45, 1341(2001) https://doi.org/10.1016/S1359-6462(01)01166-6
  10. K. R. Cardoso, A. Garcia Escorial, M. Lieblich and W. J. Botta F, Mater. Sci. Eng., A315, 89 (2001) https://doi.org/10.1016/S0921-5093(01)01197-2
  11. S. J. Hong and B. S. Chun, Mater. Sci. Eng., A348, 262 (2003) https://doi.org/10.1016/S0921-5093(02)00728-1
  12. S. J. Hong, Ph.D Thesis, Chungnam National University (2001)
  13. H. Jones, Mater. Sci. Eng., 5, 1 (1969) https://doi.org/10.1016/0025-5416(69)90077-9
  14. J. C. Foley, Ph.D. Thesis, University of WisconsinMadison (1980)
  15. J. L. Esttada, J. Duszcyk, J. Mater. Sci., 15, 1381 (1990)
  16. Z. C. Xhong, A. L. Greer, Int. J. Non-equilibrium Process, 11, 35 (1998)
  17. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Massumoto, Mater. Trans, JIM, 35, 95 (1994) https://doi.org/10.2320/matertrans1989.35.95
  18. K. Hono, Y. Zhang, A. P. Tsai, A. Inoue and T. Sakurai, Scripta Metall. Mater., 31, 191 (1995) https://doi.org/10.1016/0956-716X(94)90173-2