DOI QR코드

DOI QR Code

Fabrication of Nanostructures by Dry Etching Using Dewetted Pt Islands as Etch-masks

Dewetting된 Pt Islands를 Etch Mask로 사용한 GaN 나노구조 제작

  • Kim, Taek-Seung (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Lee, Ji-Myon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 김택승 (순천대학교 재료금속공학과) ;
  • 이지면 (순천대학교 재료금속공학과)
  • Published : 2006.03.27

Abstract

A method for fabrication of nano-scale GaN structure by inductively coupled plasma etching is proposed, exploiting a thermal dewetting of Pt thin film as an etch mask. The nano-scale Pt metal islands were formed by the dewetting of 2-dimensional film on $SiO_2$ dielectric materials during rapid thermal annealing process. For the case of 30 nm thick Pt films, pattern formation and dewetting was initiated at temperatures greater $600^{\circ}C$. Controlling the annealing temperature and time as well as the thickness of the Pt metal film affected the size and density of Pt islands. The activation energy for the formation of Pt metal island was calculated to be 23.2 KJ/mole. The islands show good resistance to dry etching by a $CF_4$ based plasma for dielectric etching indicating that the metal islands produced by dewetting are suitable for use as an etch mask in the fabrication of nano-scale structures.

Keywords

References

  1. A. Scherer and B. P. Van der Gaag, Proc. SPIE, 1284, 149 (1990) https://doi.org/10.1117/12.20784
  2. T. Iwabuchi, C. Chung, G. Khitrova, M. E. Warren, A. Chavez-Pirson, H. M. Gibbs, D. Sarid and M. Gallagher, Proc. SPIE, 1284, 142 (1990) https://doi.org/10.1117/12.20783
  3. I. Maximov, A. Gustafsson, H. C. Hansson, L. Samuelson, W. Seifert and A. Wiedesohler, J. Vac. Sci. Technol., A 11, 748 (1993) https://doi.org/10.1116/1.578341
  4. J. Bischof, D. Scherer, S. Herminghaus and P. Leiderer, Phys. Rev. Lett., 77, 1536 (1996) https://doi.org/10.1103/PhysRevLett.77.1536
  5. X. Hu, D. G. Cahill and R. S. Averback, Appl. Phys. Lett., ?15, 3215 (2000) https://doi.org/10.1063/1.126633
  6. D. J. Srolovitz and M. G. Goldiner, J. Min. Met. Mater., 47, 31(1995) https://doi.org/10.1007/BF03221433
  7. S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A Fery, M. Ibn-Elhaj and S. Schlagowski, Science, 282, 916 (1998) https://doi.org/10.1126/science.282.5390.916
  8. E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed.(Butterworth-Henemann, Oxford, 1992), p,14-8
  9. S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kotz and J. Gobrecht, Microelectron. Eng., 73-74, 196 (2004) https://doi.org/10.1016/S0167-9317(04)00098-X
  10. X. Hu, D. G. Cahill and R. S. Averback, J. Appl. Phys., 89, 7777 (2001) https://doi.org/10.1063/1.1372623
  11. J. M. Lee, K. M. Chang, I. H. Lee and S. J. Park, J. Electrochem, Soc., 147, 1859 (2000) https://doi.org/10.1149/1.1393447
  12. J. M. Lee, S. W. Kim and S. J. Park, J. Electrochem. Soc., 148, G254 (2001) https://doi.org/10.1149/1.1360191