DOI QR코드

DOI QR Code

Surface Characteristics of Porous Ti-6Al-4V Implants Fabricated by Electro-Discharge-Sintering in a Low Vacuum Atmosphere

저진공 분위기 전기방전소결에 의해 제조된 다공성 Ti-6Al-4V 임플란트의 표면특성 연구

  • Hyun, C.Y. (Department of Materials Engineering, Seoul National University of Technology) ;
  • Huh, J.K. (Department of Materials Engineering, Seoul National University of Technology) ;
  • Lee, W.H. (Department of Advanced Materials Engineering, Sejong University)
  • 현창용 (서울산업대학교 공과대학 신소재공학과) ;
  • 허재근 (서울산업대학교 공과대학 신소재공학과) ;
  • 이원희 (세종대학교 공과대학 신소재공학과)
  • Published : 2006.03.27

Abstract

A single electro-discharge-sintering (EDS) pulse (1.0 kJ/0.7 g), from a $300{\mu}F$ capacitor, was applied to atomized spherical Ti-6Al-4V powder in a low vacuum to produce porous-surfaced implant compacts. A solid core surrounded by a porous layer was formed by a discharge in the middle of the compact. XPS (X-ray photoelectron spectroscopy) was used to study the surface characteristics of the implant material. C, O, and Ti were the main constituents, with smaller amounts of Al, V, and N. The implant surface was lightly oxidized and was primarily in the form of $TiO_2$ with a small amount of metallic Ti. A lightly etched EDS implant sample showed the surface form of metallic Ti, indicating that EDS breaks down the oxide film of the as-received Ti-6Al-4V powder during the discharge process. The EDS Ti-6Al-4V implant surface also contained small amounts of aluminum oxide in addition to $TiO_2$. However, V detected in the EDS Ti-6Al-4V implant surface, did not contribute to the formation of the oxide film..

Keywords

References

  1. M. Spector, Biocompatibility of Orthopedic Implants, p.55, CRC Press, Boca Raton, (1982)
  2. M. Spector, Biocompatibility of Orthopedic Implants, p.89, CRC Press, Boca Raton, (1982)
  3. H. Q. Nguyen, D. A. Deporter, P. M. Pilliar, N. Valiquette and R. Yakubovich, Biomater., 25, 865 (2004) https://doi.org/10.1016/S0142-9612(03)00607-0
  4. V. Amigo, M. D. Salvador, F. Romero, C. Solves and J. F. Moreno, J. Mater. Proc. Technol., 14, 117 (2003) https://doi.org/10.1016/S0924-0136(03)00243-7
  5. K. Asaoka, N. Kuwayama, O. Okuno and I. Miura, J. Biomed. Mater. Res., 19, 699 (1985) https://doi.org/10.1002/jbm.820190609
  6. S. Yue, R. M. Pilliar and G. C. Weatherly, J. Biomed. Mater, Res., 18, 1043 (1984) https://doi.org/10.1002/jbm.820180908
  7. R. M. Pilliar, J. Biomed. Mater. Res., 21, 1 (1987) https://doi.org/10.1002/jbm.820210106
  8. K. Okazaki, W. H. Lee, D. K. Kim and R. A. Kopczyk, J. Biomed. Mater, Res., 25, 1417 (1991) https://doi.org/10.1002/jbm.820251202
  9. J. T. Dominici, P. J. Sammon, J. F. Drummond, M. I. Lifland, R. Geissler and K. Okazaki, J. Oral Implantol., 20, 299 (1994)
  10. J. F. Drummond, J. T. Dominici, P. J. Sammon, K. Okazaki, R. Geissler, M. I. Lifland, S. A. Anderson and W. Renshaw, J. Oral Irnplantol., 21, 295 (1995)
  11. W. H. Lee and D. A. Puleo, J. Mater. Sci. Lett., 18, 817 (1999) https://doi.org/10.1023/A:1006653503849
  12. W. H. Lee, J. W. Park, D. A. Puleo and J. Y. Kim, J. Mater. Sci., 35, 593 (2000) https://doi.org/10.1023/A:1004768125476
  13. W. H. Lee and J. W. Park, J. Mater. Sci. Lett., 19, 925 (2000) https://doi.org/10.1023/A:1006795500566
  14. W. H. Lee, S. J. Kim, W. J. Lee, C. S. Byun, D. K. Kim, J. Y. Kim, C. Y. Hyun, J. G. Lee and J. W. Park, J. Mater. Sci., 36, 3573 (2001) https://doi.org/10.1023/A:1017905305737
  15. M. Ask, J. Lausmaa and B. Kasemo, Appl. Surf. Sci., 35, 283 (1989) https://doi.org/10.1016/0169-4332(89)90013-5
  16. N. R. Armstrong and R. K. Quinn, Surf. Sci., 67, 451 (1977) https://doi.org/10.1016/0039-6028(77)90007-3
  17. W. Gopel, J. A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J. A. Shaffer and G. Rocker, Surf. Sci., 139, 333 (1984) https://doi.org/10.1016/0039-6028(84)90054-2
  18. J. Moulder, W. Stickle, P. Sobal and K. Bomber, Handbook of X-ray Photoelectron Spectroscopy, p.79, Perkin Elmer Corp., Eden Prairie, (1992)
  19. T. Hanawa and M. Ota, Appl. Surf. Sci., 55, 269 (1992) https://doi.org/10.1016/0169-4332(92)90178-Z