DOI QR코드

DOI QR Code

Sonochemical Synthesis of CdSe Nanoparticles from Mixed Aqueous Solution

초음파 화학법에 의한 CdSe 나노 입자의 합성

  • Sung, Myoung-Seok (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Yoon-Bok (Research Center for Dielectric and Advanced Matter Physics, Pusan National University) ;
  • Kim, Yong-Jin (Materials Research Station, Korea Institute of Machinery and Materials) ;
  • Kim, Young-Seok (Korea Institute of Industrial Technolgy, Busan Research Center Advanced Manufacturing Technology Team) ;
  • Kim, Yang-do (School of Materials Science and Engineering, Pusan National University)
  • 성명석 (부산대학교 재료공학부) ;
  • 이윤복 (부산대학교 유전체 물성연구소) ;
  • 김용진 (한국기계연구원 재료기술연구소) ;
  • 김영석 (한국생산기술연구원 부산지역본부 차세대생산공정팀) ;
  • 김양도 (부산대학교 재료공학부)
  • Published : 2006.03.27

Abstract

Cadmium selenide (CdSe) nanoparticles with the diameter of about 3.4nm have been synthesized from the mixed aqueous solution of distilled water and diethanolamine at room temperature. The cadmium chloride ($CdCl_2$), sodium selenosulfate ($Na_2SeSO_3$) were used as the cadmium and selenium source, respectively. The properties of CdSe nanoparticles were characterized by using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV-Vis measurements. CdSe nanoparticles were analyzed to be cubic phase with the absorption excition peaks between 540 and 600 nm. CdSe nanoparticles also showed red-shifted excition peaks with increasing the sonication time. This paper mainly presents the sonication effects on the formation of CdSe nanoparticles prepared from the mixed aqueous solution of distilled water and diethanolamine.

Keywords

References

  1. T. Trindade, P. O'Brien and N. L. Pickett, Chem. Mater., 13, 3843 (2001) https://doi.org/10.1021/cm000843p
  2. X. G. Peng, L. Manna and W. D. Yang, Nature, 404, 59 (2000) https://doi.org/10.1038/35003535
  3. Y. M. Gao, P. Wu, K. M. Dwight and A. Wold, Mater. Res. Bull., 24, 1215 (1989) https://doi.org/10.1016/0025-5408(89)90196-7
  4. L. Manna, E. C. Scher and A. P. Alivisatos, J. Am. Chem. Soc., 122, 12700 (2000) https://doi.org/10.1021/ja003055+S0002-7863(00)03055-9
  5. X. G. Peng, Adv. Mater., 15, 459 (2003) https://doi.org/10.1002/adma.200390107
  6. Z. A. Peng and X. G. Peng, J. Am. Chem. Soc., 123, 183 (2001) https://doi.org/10.1021/ja003633m
  7. D. J. Suh, O. O. Park, H. T. Jung and M. H. Kwon, Kor. J. Chem. Eng., 19(3), 529 (2002)
  8. X. Zhang, Y. Xie, L. Zhu, X. Jiang and A. Yan, Ultrason. Sonochem., 9, 311 (2002) https://doi.org/10.1016/S1350-4177(02)00086-X
  9. X. Zhang, Y. Xie, D. Xu and X. Liu, Inorg. Chem. Comm., 7, 417 (2004) https://doi.org/10.1016/j.inoche.2003.12.031
  10. G. Henshaw, I. P. Parkin and G. Shaw, J. Chem. Soc., Dalton Trans., 231 (1997) https://doi.org/10.1039/a605665b
  11. T. Hyeon, M. Fang and K. S. Suslick, J. Am. Chem. Soc., 118, 5492 (1996) https://doi.org/10.1021/ja9538187
  12. K. S. Suslick, Science, 247, 1439 (1990) https://doi.org/10.1126/science.247.4949.1439