DOI QR코드

DOI QR Code

The Heat Treatment Characteristics of Hydroxyapatite Thin Films Deposited by RF Sputtering

RF 스퍼터링으로 증착된 하이드록시아파타이트 박막의 열처리 특성

  • Jung, Chan-Hoi (Dept. of Materials Science and Engineering, Donga University) ;
  • Lee, Jun-Hee (Dept. of Materials Science and Engineering, Donga University) ;
  • Shin, Youn-Hak (Dept. of Materials Engineering, Chungbuk National University) ;
  • Kim, Myung-Han (Dept. of Materials Engineering, Chungbuk National University) ;
  • Choi, Sock-Hwan (Korea Institute of Industrial Technology) ;
  • Kim, Seung-Eon (Korea Institute Machinery & Materials)
  • Published : 2006.04.27

Abstract

RF sputtering process was applied to produce thin hydroxyapatite(HAp) films on Ti-6Al-4V alloy substrates. The effects of different heat treatment conditions on the hardness between HAp thin films and Ti-6Al-4V alloy substrates were studied. Before deposition, the Ti-6Al-4V alloy substrates were heat treated for 1h at $850^{\circ}C\;under\;3.0{\times}10^{-3}torr$, and after deposition, the HAp thin films were heat treated for 1h at $400^{\circ}C,\;600^{\circ}C\;and\;800^{\circ}C$ under the atmosphere, and analyzed FESEM-EDX, FTIR, XRD, nano-indentor, micro-vickers hardness, respectively. Experimental results represented that the surface defects of thin films decreased by relaxation of internal stress and control of substrate structure followed by heat treatment of substrates before the deposition, and the HAp thin films on the heat-treated substrates had higher hardness than none heattreated substrates before the deposition, and the hardness properties of HAp thin films and Ti-6Al-4V alloy substrates appeared independent behavior, and the hardness of HAp thin films decreased by formation of $VTiO_3(OH),\;{\theta}-Al_{0.32}V_2O_5,\;Al_{0.33}V_2O_5$.

Keywords

References

  1. J. J. Yoo and I. W. Lee, Tissue Engineering: Concept and Applications, p.61, Korea Medical Publishing Company, Seoul, Korea (1998)
  2. William D. Callister Jr, Materials Science and Engineering an Introduction, 5th ed., p.841, SciTech Media, Seoul, Korea (2000)
  3. C. H. Jung and M. H. Kim, Kor. J. Mater. Res., 13(4), 205 (2003) https://doi.org/10.3740/MRSK.2003.13.4.205
  4. ASM International, Metals Handbook : Properties and Selection - Nonferrous Alloys and Special-Purpose Materials Vol. 2, 10th ed. p,620, USA, (1990)
  5. K. van Dijk, H. G. Schaeken, J. G. G. Wolke and J. A. Jansen, Biomaterials, 17, 405 (1998) https://doi.org/10.1016/0142-9612(96)89656-6
  6. K. van Dijk, H. G. Schaeken, C. H. M. Maree, J. Verhoeven, J. G. G. Wolke, F. H. P. M, Habraken and J. A. Jansen, Surface and Coatings Technology, 76-77, 206 (1995) https://doi.org/10.1016/0257-8972(95)02590-1
  7. Natl. Bur, Stand. (U.S.) Monogr, 25, 15, 108 (1978)
  8. Perera, O, and Bowden, M., J. Mater, Sci., 26, 1585 (1991) https://doi.org/10.1007/BF00544667
  9. De Wolff, P., Technisch Physische Dienst, Delft, The Netherlands, ICDD Grant-in-Aid, (1957)
  10. Smith, D., Penn State University, University Park, Pennsylvania, USA, ICDD Grant-in-Aid, (1978)
  11. Natl. Bur. Stand. (U.S.) Monogr. 25, 12, 17 (1975)
  12. Morgan, P., Rockwell International Science Center, California, USA, Private Communication (1985)
  13. Gray, I., Nickel, Am, Mineral. 66, 866 (1981)
  14. Hagenmuller et al., C, R. Seances Acad. Sci., Ser. C,262, 99 (1966)
  15. J. L. Ong, D. R, Villarreal, R. and Ma K. Kavin, Journal of Materials Science: Materials Medicine, 12, 491 (2001) https://doi.org/10.1023/A:1011259311032
  16. W. J. Lo, D. M, Grant, M. D, Ball, B. S. Welsh, S. M. Howdle, E. N. Antonov, V. N. Bagratashvili and V. K. Popov, John Wiley & Sons, Inc, J. Biomed. Mater, Res., 50, 536 (2000) https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<536::AID-JBM9>3.0.CO;2-U