DOI QR코드

DOI QR Code

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps

PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가

  • Cha, Nam-Goo (Division of Materials and Chemical Engineering, Micro Biochip Center, Hanyang University) ;
  • Park, Chang-Hwa (Division of Materials and Chemical Engineering, Micro Biochip Center, Hanyang University) ;
  • Cho, Min-Soo (Division of Materials and Chemical Engineering, Micro Biochip Center, Hanyang University) ;
  • Kim, Kyu-Chae (Division of Materials and Chemical Engineering, Micro Biochip Center, Hanyang University) ;
  • Park, Jin-Goo (Division of Materials and Chemical Engineering, Micro Biochip Center, Hanyang University) ;
  • Jeong, Jun-Ho (Precision Machining Group, Korea Institute of Machinery & Materials) ;
  • Lee, Eung-Sug (Precision Machining Group, Korea Institute of Machinery & Materials)
  • 차남구 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 박창화 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 조민수 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 김규채 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 박진구 (한양대학교 재료화학공학부 마이크로바이오칩센터) ;
  • 정준호 (한국기계연구원 지능형정밀기계연구부) ;
  • 이응숙 (한국기계연구원 지능형정밀기계연구부)
  • Published : 2006.04.27

Abstract

Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Keywords

References

  1. C. M. Sotomayor Torres, Alternative Lithography - Unleashing the Potential s of N anotechnology, 1st ed. Kluwer Academic Publishers, chapter 1 (2003)
  2. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl. Phys. Lett., 67, 3114 (1995) https://doi.org/10.1063/1.114851
  3. H. Schift, R. W. Jaszewski, C. David and J. Gobrecht, Microelectronic Engineering, 49, 121 (1999) https://doi.org/10.1016/S0167-9317(99)00030-1
  4. C. David, P. Haberling, M. Schnieper, J. Sochtig and C. Zschokke, Microelectronic Engineering, 61, 435 (2002) https://doi.org/10.1016/S0167-9317(02)00425-2
  5. B. J. Smith, et al, Proceedings of SPIE - Emerging Lithographic Technologies VII, 5037, 1029 (2003) https://doi.org/10.1117/12.490142
  6. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo and L. Zhuang, J. Vac, Sci, Technol. B, 15(6), 2897 (1997) https://doi.org/10.1116/1.589752
  7. Y. Chen, Proceeding of NSF Workshop on 3D Nanomanufacturing Birmingham, AL, Jan, 5-6, 1 (2003)
  8. H. Lee, S, H. Hong, K, Y. Yang and K. W. Choi, Microelectronic Engineering, 83, 323 (2005) https://doi.org/10.1016/j.mee.2005.09.006
  9. V. Studer, A. Pepin and Y. Chen, Appl. Phys, Lett., 80, 3614 (2002) https://doi.org/10.1063/1.1479202
  10. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Appl, Phys, Lett., 67, 3114 (1995) https://doi.org/10.1063/1.114851
  11. I. Martini, S. Kuhn, M. Kamp, L. Worschech and A. Forchel, J. Vac, Sci, Technol. B, 18(6), 3561 (2000) https://doi.org/10.1116/1.1319705
  12. S. J. Park, K. S. Cho and C. G. Choi, J. Colloidal and Interrace Sci., 258, 424 (2003) https://doi.org/10.1016/S0021-9797(02)00094-2
  13. N. G. Cha, C. H. Park, H. W. Lim, J. G. Park, J. H. Jeong and E. S, Lee, Kor, J. Mater, Res., 15, 589 (2005) https://doi.org/10.3740/MRSK.2005.15.9.589
  14. R, W. Jaszewski, H. Schift, B. Schnyder, A. Schneuwly, and P. Groning, Appl. Surface Sci., 143, 301 (1999) https://doi.org/10.1016/S0169-4332(99)00014-8
  15. N. G. Cha, C. H. Park, M. S. Cho, J. G. Park, J. H. Jeong and E. S. Lee, Kor, J. Mater, Res., 15, 705 (2005) https://doi.org/10.3740/MRSK.2005.15.11.705
  16. Adamson A. W., Physical Chemistry of Surfaces, 6th ed, John Wiley & Sons, Inc, 355 (1997)
  17. Mittal, K. L., Contact Angle, Wettablity and Adhesion, Vol 1, VSP BV, Netherlands 139 (1993)
  18. Tompkins, H. G., A users Guide to Ellipsometry, Academic Press, New York, chapter 3 (1993)
  19. K. K. Lee, N. G. Cha, J. S. Kim, J. G. Park and H. J. Shin, Thin Solid Films, 377, 727 (2000) https://doi.org/10.1016/S0040-6090(00)01288-8
  20. S. Y. Kim, J. Optical Soc. Kor., 3, 92 (1992)
  21. I. P. Vinogradov, and A. Lunk, Plasma Pro. Polymer, 2, 201 (2005) https://doi.org/10.1002/ppap.200400086
  22. I. P. Vinogradov, A, Dinkelmann and A. Lunk, Surf, Coatings Tech., 174, 509 (2003) https://doi.org/10.1016/S0257-8972(03)00615-7
  23. N. G. Cha, C. H. Park, H. W. Lim and J. G. Park, J. Kor, Phys, Soc., 47, 530 (2005)