DOI QR코드

DOI QR Code

High-Temperature Stability Evaluation of Various Surface Treated Layers of Materials for Ultra-Super Critical Power Plants

초초임계압 발전용 소재의 표면처리층의 고온 안정성 평가

  • Ryu, K.H. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ) ;
  • Song, T.K. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ) ;
  • Lee, J.H. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ) ;
  • Kim, G.S. (School of Nano & Advanced Materials Sci. & Eng., Changwon National Univ) ;
  • Lee, S.H. (Doosan Heavy Industries & Construction Co.) ;
  • Urm, K.W. (Doosan Heavy Industries & Construction Co.)
  • Published : 2006.05.27

Abstract

In order to improve thermal efficiency of the fossil fuel power plants, we need to develop advanced materials with superior durability in the ultra-super critical state, which requires surface modifications for superior surface properties. In this study, we coated the Incoloy 901 and 12-17Cr steels for turbine buckets and valves with nitriding, boriding, and $Cr_3C_2-NiCr$ HVOF(high velocity oxygen flow) method. Then the samples were heat treated at $650^{\circ}C$ for 100 hours in vacuum. We analyzed the evolution behaviors of nitrides such as $Fe_3N,\;Fe_4N$, and CrN and borides such as FeB and $Fe_2B$ with XRD and SEM/EDS by comparing hardnesses and compositions of the coated layers before and after the heat treatments.

Keywords

References

  1. Ministry of Commerce, Industry and Energy, Research on developing heat-resisting alloys for fossil fuel power plants, (2001)
  2. K. Kaneko, S. Matsumura, A. Sadakata, K. Fujita, W.-J. Moon, S. Ozaki, N. Nishimura and Y. Tomokiyo, Materials Science and Engineering A, 374, 82 (2004) https://doi.org/10.1016/j.msea.2003.12.065
  3. U. E. Klotz, C. Solenthaler, P. Ernst, P. J. Uggowitzer and M. O. Speidel, Materials Science and Engineering A, 272, 292 (1999) https://doi.org/10.1016/S0921-5093(99)00490-6
  4. V. Sklencka, K. Kuchacova, M. Svoboda, L. Kloc, J. Burcik and A. Kroupa, Materials Characterization, 51, 35 (2003) https://doi.org/10.1016/j.matchar.2003.09.012
  5. F. Abe, T. Horiuchi, M. Taneike and K. Sawada, Materials Science and Engineering A, 378, 299 (2004) https://doi.org/10.1016/j.msea.2003.11.073
  6. Y. Hosoi, N. Wade, S. Kunimitsu and T. Urita, J. Nucl. Mater., 461, 141 (1986)
  7. K. Miyahara, J. H. Hwang and Y. Shimoide, Scr. Metall. Mater., 32, 1917 (1995) https://doi.org/10.1016/0956-716X(95)00086-B
  8. J. Hald, Steel Res., 9, 369 (1996)
  9. K. Rodak, A. Hernas and A. Kielbus, Materials Chemistry and Physics, 9814, 1 (2003)
  10. D. J. Cooch, Met. Sci., 16, 79 (1982) https://doi.org/10.1016/0036-9748(82)90407-0
  11. H. E. Evans, Mechanism of Creep Fracture (Elsevier Applied Science, 1984)
  12. D. S. Gells, J. Nucl. Mater., 122, 207 (1984) https://doi.org/10.1016/0022-3115(84)90597-X
  13. Y. Shibuya, K. Isobe and M. Yanagihara, J. Jpn. Heat Treatment, 5, 261 (1991)
  14. J. J. Egan, U. S. Patent, 1837256 (1931)
  15. B. Berghaus, U. S. Patent, 3181029 (1965)
  16. A. S. Korhonen and E. H. Sirvio, Thin Solid Films, 96, 103 (1982) https://doi.org/10.1016/0040-6090(82)90218-8
  17. Y. S. Kim and J. R. Park, Journal of Korean Welding Society, 17, 6 (1999)
  18. B. Edenhofer, Heat Treatment of Metals, 1, 59 (1974)