DOI QR코드

DOI QR Code

Thermoelectric Properties of Co1-xNixSb3 Prepared by Encapsulated Induction Melting

밀폐유도용해로 제조한 Co1-xNixSb3의 열전특성

  • Kim, Mi-Jung (Department of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Choi, Hyun-Mo (Department of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Ur, Soon-Chul (Department of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Kim, Il-Ho (Department of Materials Science and Engineering/ReSEM, Chungju National University)
  • 김미정 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 최현모 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 어순철 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 김일호 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터)
  • Published : 2006.06.27

Abstract

Skutterudite $CoSb_3$ doped with nickel was prepared by encapsulated induction melting, and its doping effects on thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by encapsulated induction melting and subsequent heat treatment at 773 K for 24 h. Nickel atoms acted as electron donors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by appropriate heat treatment and doping, and they were closely related to phase transitions and dopant activation. The maximum ZT(dimensionless figure of merit) was achieved as 0.2 at 600 K for the $Co_{0.93}Ni_{0.07}Sb_3$ specimen.

Keywords

References

  1. G. A. Slack and V. G. Tsoukala, J. Appl. Phys, 76, 1665 (1994) https://doi.org/10.1063/1.357750
  2. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin and B. C. Sales, J. Appl. Phys., 78, 1013 (1995) https://doi.org/10.1063/1.360402
  3. T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd Ed., American Society for Metals, 1233 (1990)
  4. P. Feschotle and D. Lorin, J. Less-Common Metals, 155, 255 (1989) https://doi.org/10.1016/0022-5088(89)90235-X
  5. T. Caillat, A. Borshchevski and J.-P. Fleurial, Proc. 13th Intl. Conf. Thermoelectrics, 58 (1994)
  6. Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, J. Alloys & Comp. 375, 193 (2001) https://doi.org/10.1016/S0925-8388(00)01275-5
  7. K. T. Wojciechowski, J. Tobola and J. Leszczynski, J. Alloys & Comp. 361, 19 (2003) https://doi.org/10.1016/S0925-8388(03)00411-0
  8. J. Yang, D. T. Morelli, G. P. Meisner, W. Chen, J. S. Dyck and C. Uher, Phys, Rev., B65, 94115 (2002) https://doi.org/10.1103/PhysRevB.65.094115
  9. S. Katsuyama, M. Watanabe, M. Kuroki, T. Maehata and M. Ito, J. Appl. Phys., 93, 2758 (2003) https://doi.org/10.1063/1.1545158
  10. H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara and H. Tashiro, J. Appl. Phys., 86, 3780 (1999) https://doi.org/10.1063/1.371287
  11. T. Caillat, A. Borshchevski and J.-P. Fleurial, J. Appl. Phys., 80, 4442 (1996) https://doi.org/10.1063/1.363405
  12. H. Tashiro, Y. Notohara, T. sakaibara, H. Anno and K. Matsubara, Proc. 16th Intl. Conf. Thermoelectrics, 326 (1997)
  13. Y. Nakamoto, K. Tanaka and T. Koyanagi, Proc. 17th Intl. Conf. Thermoelectrics, 302 (1998)
  14. I.-H. Kim, G.-S. Choi, M.-G. Han, J.-S. Kim, J.-I. Lee, S.-C. Ur, T.-W. Hong, Y.-G. Lee and S.-L. Ryu, Mater. Sci. Forum, 449, 917 (2004) https://doi.org/10.4028/www.scientific.net/MSF.449-452.917
  15. K. Matsubara, T. Sakakibara, Y. Notohara, H. Anno, H. Shimuzu and T. Koyanagi, Proc. 15th Intl. Conf. Thermoelectrics, 96 (1996)

Cited by

  1. thermoelectric materials prepared by a spark plasma sintering method vol.20, pp.1, 2010, https://doi.org/10.6111/JKCGCT.2010.20.1.030
  2. Nanoparticle by Hot Injection Method vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.476