DOI QR코드

DOI QR Code

Dependence of Ferroelectric Properties on the Crystalline Phases of HoMnO3 Thin Film

HoMnO3 박막의 강유전 특성의 결정상 의존성

  • Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University) ;
  • Kang, Dong-Ho (Department of Materials Engineering, Kyonggi University)
  • Published : 2006.06.27

Abstract

Ferroelectric $HoMnO_3$ thin films were deposited on the Si(100) substrate at $700^{\circ}C$ for 2 hrs by metalorganic chemical vapor deposition (MOCVD) and post-annealed at 850oC by rapid thermal process (RTP). Electrical properties and crystalline phases of $HoMnO_3$ thin films were investigated as a function of postannealing time. Single phase of hexagonal symmetry with c-axis preferred orientation was obtained from $HoMnO_3$ thin films post-annealed at $850^{\circ}C$ for 5 min, while the c-axis preferred orientation was decreased with the increase of post-annealing time, and the thin films post-annealed at $850^{\circ}C$ for 15 min showed the mixture phases of hexagonal and orthorhombic symmetry. P-E (Polarization-Electric field) hysteresis loop of ferroelectric $HoMnO_3$ thin films was observed only for the single phase of hexagonal symmetry, but that was not observed for the mixture phases of the hexagonal and orthorhombic symmetry, which was discussed with the bond valence of Mn ion of crystalline phase. Leakage current density was dependent on the microstructure of thin films as well as the change of valence of Mn ion.

Keywords

References

  1. E. F. Bertaut, H. L. Yakel, W. C. Koeiler and E. F. Forrat, Acta. Cryst., 16, 957 (1963) https://doi.org/10.1107/S0365110X63002589
  2. M. N. Iliev, H. G. Lee, V. N. Popov, M. V. Abrashev, A. Hamed, R. L. Meng and C. W. Chu, Phys. Rev., B56(5), 2488 (1997) https://doi.org/10.1103/PhysRevB.56.2488
  3. V. E. Wood, A. E. Austin, E. W. Collings and K. C. Brog, J. Phys. Chem. Solids., 34, 859 (1973) https://doi.org/10.1016/S0022-3697(73)80088-5
  4. E. S. Kim, S. H. Noh, Y. T. Kim, S. G. Kang and K. B. Shim, J. Kor. Ceram. Soc., 38(5), 796 (1997)
  5. K. Werner and D. A. Putinen, RCA Review, 3, 187 (1999)
  6. S. L. Miller, J. R. Schwank, R. D. Nasby and M. S. Rodgers, J. Appl. Phys., 70(5) 2849 (1991) https://doi.org/10.1063/1.349348
  7. D. C. Yoo, J. Y. Lee, I. S. Kim and Y. T. Kim, J. Cryst. Growth., 233, 243 (2001) https://doi.org/10.1016/S0022-0248(01)01563-9
  8. H. N. Lee, Y. T. Kim and Y. K. Park, Appl. Phys. Lett., 74(25) 3887 (1999) https://doi.org/10.1063/1.124213
  9. N. E. Brese and M. O'Keefe, Acta. Cryst., B47, 192 (1991) https://doi.org/10.1107/S0108768190011041
  10. I. D. Brown and D. Altermatt, Acta. Cryst., B41, 244 (1985) https://doi.org/10.1107/S0108768185002063
  11. S. Dai, Z. W. Li, A. H. Morrish and X. Z. Zhou, Phys. Rev., B55(21), 14125 (1997) https://doi.org/10.1103/PhysRevB.55.14125
  12. W. C. Yi, S. I. Kwun and J. G. Yoon, J. Phys. Soc. Jpn., 69(8), 2706 (2000) https://doi.org/10.1143/JPSJ.69.2706
  13. H. Kitahata, K. Tadanaga, T. Minami, N. Fujimura and T. Ito, Appl. Phys. Lett., 75(5) 719 (1999) https://doi.org/10.1063/1.124493