DOI QR코드

DOI QR Code

Porous SnO2 Films Fabricated Using an Anodizing Process

양극산화법에 의한 다공성 SnO2 피막

  • Han, Hye-Jeong (Dept. of Metal and Materials Eng., Kangnung National University) ;
  • Choi, Jae-Ho (Dept. of Metal and Materials Eng., Kangnung National University) ;
  • Min, Seok-Hong (Dept. of Metal and Materials Eng., Kangnung National University)
  • 한혜정 (강릉대학교 금속재료공학과) ;
  • 최재호 (강릉대학교 금속재료공학과) ;
  • 민석홍 (강릉대학교 금속재료공학과)
  • Published : 2006.08.27

Abstract

The measurement of specific gases is based on the reversible conductivity change of sensing materials in semiconductor type gas sensors. For an application as gas sensors of high sensitivity, porous $SnO_2$ films have been fabricated by anodizing of pure Sn foil in oxalic acid and characteristics of anodic tin oxide films have been investigated. Pore diameter and distribution were dependent on process conditions such as electrolyte concentration, applied voltage, anodizing temperature, and time. Characteristics of anodic films were explained with current density-time curves.

Keywords

References

  1. K. P. Seong, D. S. Choi, J. H. Kim, J. H. Moon, T. H. Myoung and B. J. Lee, Kor. J. Mater. Res., 10(11), 778 (2000)
  2. Y. J. Park, W. Y. Lee, Y. K. Choi, H. K. Lee and J. S. Park, Kor. J. Mater. Res., 14(12), 840 (2004) https://doi.org/10.3740/MRSK.2004.14.12.840
  3. W. Goepel and K. D. Schierbaum, Sensors and Actuators B. 26(1-3), 1 (1995) https://doi.org/10.1016/0925-4005(94)01546-T
  4. A. Dieguez, A. R. Rodriguez, J. R. Morante, J. Kappler, N. Barsan and W. Gopel, Sensors and Actuators B. 60(23), 125 (1999) https://doi.org/10.1016/S0925-4005(99)00258-0
  5. S. Budak, G. X. Miao, M. Ozdemir, K. B. Chetry and A. Gupta, J. of Crystal Growth, 291(2), 405 (2006) https://doi.org/10.1016/j.jcrysgro.2006.03.045
  6. Y. J. Ma, F. Zhou, L. Lu and Z. Zhang, Z. Solid State Communications, 130(5), 313 (2004) https://doi.org/10.1016/j.ssc.2004.02.013
  7. W. Zhu, W. Wang, H. Xu and J. Shi, Mater. Chem. and Phys. 99(1), 127 (2006) https://doi.org/10.1016/j.matchemphys.2005.10.002
  8. M. J. Kim, J. S. Lee and J. B. Yoo, Kor. J. Mater. Res., 14(2), 133 (2004) https://doi.org/10.3740/MRSK.2004.14.2.133
  9. S. H. Cho, H. J. Oh, E. K. Joo, C. W. Yoo and C. S. Chi, Kor. J. Mater. Res., 12(7), 533 (2002) https://doi.org/10.3740/MRSK.2002.12.7.533
  10. J. M. Jang, H. J. Oh, J. H. Lee, S. H. Cho and C. S. Chi, Kor. J. Mater. Res., 12(5), 353 (2002) https://doi.org/10.3740/MRSK.2002.12.5.353
  11. H. C. Shin, J. Dong and M. Liu, Adv. Mater., 16(3), 237 (2004) https://doi.org/10.1002/adma.200305660
  12. T. P. Hoar and J. Yahalom, J. Electrochem. Soc., 110(6), 614 (1963) https://doi.org/10.1149/1.2425839
  13. J. W. Diggle, T. C. Downie and C. W. Goulding, Chem. Rev., 69(3), 365 (1969) https://doi.org/10.1021/cr60259a005
  14. K. H. Lee, H. Y. Lee and W. Y. Jeong, J. of Kor. Electrochem. Soc., 4(2), 47 (2001)