DOI QR코드

DOI QR Code

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere

고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동

  • Published : 2006.09.27

Abstract

The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

Keywords

References

  1. F. J. Kohl, G. J. Santoro, C. A .Stearns, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979) https://doi.org/10.1149/1.2129173
  2. S. Karneswari, Oxid. Met., 6, 33 (1973)
  3. A. Rahmel and H. J. Engell, Corrosion, 18, 320 (1969)
  4. M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros, Sci., ?39, 1193 (1997) https://doi.org/10.1016/S0010-938X(97)00020-6
  5. S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137,2713 (1990) https://doi.org/10.1149/1.2087031
  6. M. M. Kochergin and G. I. Stolyarava, J. Appl. Chem. USSR, 29, 789 (1956)
  7. H. R. Copson, J. Electrochem. Soc., 100,257 (1953) https://doi.org/10.1149/1.2781115
  8. F. Colom and A. Bodalo, Corros, Sci., 12, 73 (1972)
  9. W. H. Smyrl and M. J. Blanckburn, Corrosion, 31, 370 (1972)
  10. C. B. Gill, M. E. Staumanis and W. E. Schlechten, J. Electrochem. Soc., 102, 42 (1955) https://doi.org/10.1149/1.2429987
  11. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980)
  12. H. Izuta and Y. Kornura, J. Jpn. Inst. Mct., 58, 1196 (1994)
  13. Y. Harada, Jpn. Therm, Spraying Soc., 33, 128 (1996)
  14. G. C. Wood, Corros. Sci., 2, 173 (1962) https://doi.org/10.1016/0010-938X(62)90019-7
  15. F. H. Stott, G. C. Wood and J. Stringer, Oxid. Met., 32, 113 (1989)
  16. G. C. Allen and R. K. Wild, J. Electron. Spectroscopy, 5, 409 (1974) https://doi.org/10.1016/0368-2048(74)85027-9
  17. D. Caplan and M, Cohen, Corrosion, 15, 141 (1959)
  18. C. W. Tuck, M. Odgers and K. Sachs, Corros. Sci., 9, 271 (1969) https://doi.org/10.1016/S0010-938X(69)80056-9
  19. I. Kvernes, M. Oliveira and P. Kofstad, Corros. Sci., 17, 237 (1977) https://doi.org/10.1016/0010-938X(77)90049-X
  20. H. H. Davis, H. C. Graham and I. A. Krernes, Oxid, Met., 3,431 (1971) https://doi.org/10.1007/BF00604044
  21. F. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle and B. D. Bastow, Corros. Sci., 21, 599 (1981) https://doi.org/10.1016/0010-938X(81)90011-1
  22. M. Skashita and N. Sato, Corros, Sci., 17, 473 (1977) https://doi.org/10.1016/0010-938X(77)90003-8
  23. C. R. Crayton and Y. C, Lu, Corros. Sci., 29, 7 (1989) https://doi.org/10.1016/0010-938X(89)90059-0
  24. S. Ling, T. A. Rahmel and R. Petkovic-Luton, Oxid. Met., 40, 180 (1993)