DOI QR코드

DOI QR Code

Thermal Stability Enhancement of Nickel Monosilicides by Addition of Iridium

이리듐 첨가에 의한 니켈모노실리사이드의 고온 안정화

  • Yoon, Ki-Jeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul)
  • 윤기정 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Published : 2006.09.27

Abstract

We fabricated thermal evaporated 10 nm-Ni/(poly)Si and 10 nm-Ni/1 nm-Ir/(poly)Si films to investigate the thermal stability of nickel monosilicide at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides for salicide process was formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester is used for sheet resistance. Scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An x-ray diffractometer and an auger depth profile scope were used for phase and composition analysis, respectively. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1200^{\circ}C$ and $800^{\circ}C$, respectively, while the conventional nickel monosilicide showed low resistance below $700^{\circ}C$. The grain boundary diffusion and agglomeration of silicides led to lower the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.

Keywords

References

  1. The International Technology RoadMap For Semiconductor, Front End Process, p. 25, SIA, 2003 Edition (2003)
  2. J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er and S. Redkar, Appl. Phys. Lett., 78, 3091 (2001) https://doi.org/10.1063/1.1372621
  3. J. Prokop, C. E. Zybill and S. Veprek, Thin Solid Films, 359, 39 (2000) https://doi.org/10.1016/S0040-6090(99)00654-9
  4. C. Detavernier, R. L. Van Meirhaeghe and F. Cardon, J. Appl. Phys., 88, 133 (2000) https://doi.org/10.1063/1.373633
  5. J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin and D. Vanhoenacker, J. Electrochem. Soc., 7,144 (1997) https://doi.org/10.1149/1.1837833
  6. J. J. Sun, J. Y. Tsai and C. M. Osburn, IEEE Transactions on Electron Devices, 45, 1946 (1998) https://doi.org/10.1109/16.711360
  7. Hua. Fang, Mehmet C. Ozturk, E. G. Seebauer and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999) https://doi.org/10.1149/1.1392621
  8. J. Lutze, G. Scott and M. Manley, IEEE Electron Device Lett., 21, 155 (2000) https://doi.org/10.1109/55.830966
  9. J. B. Lasky, J. S. Nakos, O. J. Cain and P. J. Geiss, IEEE Trans. Electron Devices, 38, 262 (1991) https://doi.org/10.1109/16.69904
  10. B. A. Julies, D. Knoesen, R. Pretorius and D. Adams, Thin Solids Films, 347, 201 (1999) https://doi.org/10.1016/S0040-6090(99)00004-8
  11. W. Huang, L.-C. Zhang, Y.-Z. Gao and H.-Y. Jin, Microelectronic Engineering, 83, 345, (2006) https://doi.org/10.1016/j.mee.2005.10.001
  12. E. G. Colgan, J. P. Gambino and Q. Z. Hong, Materials Science and Engineering, 16, 43, (1996) https://doi.org/10.1016/0927-796X(95)00186-7
  13. R. Kurt, W. Pitscheke, A. Heinrich, H. Griesmann, J. Schumann and K. Wetzig, 17th International Conference on Thermoelectrics, 249 (1998) https://doi.org/10.1109/ICT.1998.740364
  14. V. M. levlev, S. B. Kushchev, I. G. Rudneva and S. A. Soldatenko, Inorganic Materials, 39, 472, (2003) https://doi.org/10.1023/A:1023616410170