DOI QR코드

DOI QR Code

Patterning of poly(3,4-ethylenedioxythiophene)(PEDOT) Thin Films by Using Self-assembled Monolayers(SAMs) Patterns Formed by Ultra-violet(UV) Lithography

UV를 사용한 SAMs 패터닝과 PEDOT의 선택적 증착에 관한 연구

  • Kwon, T.W. (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, J. (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, J.G. (School of Advanced Materials Engineering, Kookmin University)
  • 권태욱 (국민대학교 신소재공학부) ;
  • 이정길 (국민대학교 신소재공학부) ;
  • 이재갑 (국민대학교 신소재공학부)
  • Published : 2006.10.27

Abstract

Selective vapor deposition of conductive poly(3,4-ethylenedioxythiophene) (PEDOT), thin films has been carried out on self assembled monolayers patterned oxide substrate. Since the 3,4-ethylenedioxythiophene(EDOT) monomer can be polymerized only in the presence of oxidant such as $FeCl_3$, the PEDOT thin film is selectively deposited on patterned $FeCl_3$, which only adsorbs on the partly removed SAMs region due to the inability of $FeCl_3$ to adsorb on SAMs. Therefore, the partly removed SAMs can act as an adsorption layer for the $FeCl_3$ and also as a glue layer for the deposition of PEDOT, resulting in the significantly increased adhesion of PEDOT to $SiO_2$ substrate. The use of UV lithography and Cr patterned quartz mask provided the formation of SAMs patterns on oxide substrates, which allowed for the selective deposition of conductive PEDOT thin films.$^{oo}The$ new process was successfully developed for the selective deposition of PEDOT thin films on SAMs patterned oxide substrate, providing a new way for the patterning of vapor phase deposition of PEDOT thin films with accurate alignment and addressing the inherent adhesion issues between PEDOT and dielectrics.

Keywords

References

  1. J. W. Thackeray, H. S. White and M. S. Wrighton, J. Phys. Chem., 89, 5133 (1985) https://doi.org/10.1021/j100269a048
  2. G. Gustafsson, Y. Cao, G. M. Tracy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature, 357, 447 (1993)
  3. Y. Gao, A. J. Heeger, J. Y. Lee and C. Y. Kim, Synth. Met., 82, 221 (1996) https://doi.org/10.1016/S0379-6779(96)03794-0
  4. Y. Gao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Synth. Met., 87, 171 (1997) https://doi.org/10.1016/S0379-6779(97)03823-X
  5. J. C. Scott, S. A. Carter, S. Karg and M. Angelopoulos, Synth. Met., 85, 1197 (1997) https://doi.org/10.1016/S0379-6779(97)80207-X
  6. S. Cho, S. H. Park and K. J. Lee, J. Korean Phys. Soc., 47, 474 (2005)
  7. Handbook of Conductive Molecules and Polymers, H. S. Nalwa, Editor, Vol. 1-4, Wiley, New York (1997)
  8. H. Yoneyama, K. Wakamoto and H. J. Tamura, J. Electrochem. Soc., 32, 2414 (1985) https://doi.org/10.1149/1.2113587
  9. K. Kaneto, M. Maxfield, D. P. Nairns, A. G. MacDiarmid and A. J. Heeger, J. Chem. Soc., 78, 3417 (1982)
  10. Roncali, J. Chem. Rev., 92, 711 (1992) https://doi.org/10.1021/cr00012a009
  11. D. Hohnholz, H. Okuzaki and A. G. MacDiarmid, Adv. Func. Mat., 15, 51 (2005) https://doi.org/10.1002/adfm.200400241
  12. A. Baba, J. Lubben, K. Tamada and W. Knoll, Langmuir, 19, 9058 (2003) https://doi.org/10.1021/la034848n
  13. D. M. De Leeuw, P. A. Kraakman, P. E. G. Bongaerts, C. M. J. Mutsaers and B. B. M. Klaassen, Synth. Met., 66, 263 (1994) https://doi.org/10.1016/0379-6779(94)90076-0