DOI QR코드

DOI QR Code

The Characteristics of Silica Powders Prepared by Spray Pyrolysis Applying Droplet Classification Apparatus

액적 분급 장치를 적용한 분무열분해 공정으로부터 합성된 실리카 분말의 특성

  • Kang, Yun-Chan (Department of Chemical Engineering, Konkuk University) ;
  • Ju, Seo-Hee (Department of Chemical Engineering, Konkuk University) ;
  • Koo, Hye-Young (Department of Chemical Engineering, Konkuk University) ;
  • Kang, Hee-Sang (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of science and Technology) ;
  • Park, Seung-Bin (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of science and Technology)
  • 강윤찬 (건국대학교 화학공학과) ;
  • 주서희 (건국대학교 화학공학과) ;
  • 구혜영 (건국대학교 화학공학과) ;
  • 강희상 (한국과학기술원 생명화학공학과) ;
  • 박승빈 (한국과학기술원 생명화학공학과)
  • Published : 2006.10.27

Abstract

Silica powders with spherical shape and narrow size distribution were prepared by large-scale ultrasonic spray pyrolysis applying the droplet classification apparatus. On the other hand, silica powders prepared by large-scale ultrasonic spray pyrolysis without droplet classification apparatus had broad size distribution. Droplet classification apparatus used in this paper applied the principles of cyclone and dispersion plate with small holes. The droplets formed from the ultrasonic spray generator applying the droplet classification apparatus had narrow size distribution. The droplets with fine and large sizes were eliminated by droplet classification apparatus. The optimum flow rate of the carrier gas and diameter of the hole of the dispersion plate were studied to reduce the size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis. The size distribution of the silica powders prepared by large-scale ultrasonic spray pyrolysis at the optimum preparation conditions was 0.76.

Keywords

References

  1. T. C. Pluym and T. T. Kodas, J. Mater. Res., 10, 1662 (1995)
  2. Y. C. Kang, I. W. Lenggoro, K. Okuyama and S. B. Park, J. Electrochem. Soc., 146, 1227 (1997) https://doi.org/10.1149/1.1391750
  3. Y. C. Kang and S. B. Park, Jpn. J. Appl. Phys., 38 (12B), L1541 (1999) https://doi.org/10.1143/JJAP.38.L1541
  4. Y. C. Kang, H. S. Roh and S. B. Park, Adv. Mater., 12, 451 (2000) https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<451::AID-ADMA451>3.0.CO;2-S
  5. G. L. Messing, S. C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc., 76, 2707 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  6. A. Gurav, T. T. Kodas, T. Pluym and Y. Xiong, Aerosol Sci. & Tech., 19, 411 (1993) https://doi.org/10.1080/02786829308959650
  7. K. H. Leong, J. Aerosol. Sci., 18, 511 (1987) https://doi.org/10.1016/0021-8502(87)90066-8
  8. C. S. Zhang, G. L. Messing and W. Huebner, J. Aerosol Sci., 22, 585 (1991) https://doi.org/10.1016/0021-8502(91)90014-9
  9. K. L. Chopra, R. C. Kainthla, D. K. Pandya and A. P. Thakoor, Physics of Thin Films, ed. G. Hass, M.H. Francombe and Y.L. Vossem (Academic Press, New York, USA, 1982) p.167