DOI QR코드

DOI QR Code

Surface Coating of SiO2 on TiO2-natural Zeolite Composite Particles and Its Characterization

실리카 코팅된 TiO2-천연 제올라이트 복합입자 제조와 특성평가

  • Lim, Hyung-Mi (Composites materials Lab., Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Ji-Sook (Composites materials Lab., Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Dong-Jin (Composites materials Lab., Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Seung-Ho (Composites materials Lab., Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology)
  • 임형미 (요업(세라믹)기술원 나노소재응용본부 복합재료팀) ;
  • 정지숙 (요업(세라믹)기술원 나노소재응용본부 복합재료팀) ;
  • 이동진 (요업(세라믹)기술원 나노소재응용본부 복합재료팀) ;
  • 이승호 (요업(세라믹)기술원 나노소재응용본부 복합재료팀)
  • Published : 2006.11.27

Abstract

Deodorization of natural zeolites have been improved not only for polar but also for non-polar pollutants by sucessive ion exchanges of H and Ag ions starting from Korean natural zeolite with high adsorption capacity. The modified zeolites with $TiO_2$ coating on the surface revealed high deodorization and photocatalytic decomposition effects. Further modification was made with $10{\sim}20nm$ silica nano particles coating on the surface, the resulting composite particles of $SiO_2/TiO_2/modified$ natural zeolite revealed not only comparable deodorization but also better durability and resisatnce to color change compared to the $TiO_2$/modified natural zeolite without much compensation of photocatalytic decomposition effect, when the composite particles were exposed to the polypropylene non-woven fiber coated with organic binder. It is expected for the composite particle prepared here to be used as indoor building materials for indoor air quality control.

Keywords

References

  1. D. Won, D. M. Sander, C. Y. Shaw and R. L. Corsi, A tmospheric Environment, 35, 4479 (2001) https://doi.org/10.1016/S1352-2310(01)00223-0
  2. R. B. Jorgensen and O. Bjorseth, Environment International, 25(1), 17 (1999) https://doi.org/10.1016/S0160-4120(98)00090-7
  3. J. Pires, A. Carvalho and M.B. de varvalbo, Microporous and Mesoporous Mater., 43, 277 (2001) https://doi.org/10.1016/S1387-1811(01)00207-4
  4. H. M. Lim, J. S. Jung, D. S. Kim, D. J. Lee, S.-H. Lee and W. N. Kim, Material Science Forum, 510-511, 934 (2006) https://doi.org/10.4028/www.scientific.net/MSF.510-511.934
  5. S. Anandan and M. Yoon, J. Photochemistry and Phtobiology Reviews, 4, 5 (2003) https://doi.org/10.1016/S1389-5567(03)00002-9
  6. E. R. Reddy, L. Davydov and P. Smirniotis, Applied Catalysis B: Environmental, 42, 1 (2005) https://doi.org/10.1016/S0926-3373(02)00192-3
  7. F. Li, Y. Jiang, L. Xu, Z. Yang, T. Hou and S. Sun, Applied Surface Science, 252, 1410 (2005) https://doi.org/10.1016/j.apsusc.2005.02.111
  8. S. M. Kanan, M. C. Kanan and H. H. Patterson, Current Opinion in Solid State and Materials Science, 7, 443 (2003) https://doi.org/10.1016/j.cossms.2004.02.005
  9. H. Chen, A. Matsumoto, N. Nishimiya and K. Tsutsumi, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157, 295 (1999) https://doi.org/10.1016/S0927-7757(99)00052-7
  10. F. Haque, E. Vaisman, C. H. Langford and A. Kantzas, J. of Photochemistry and Photobiology A: Chemistry, 169, 21 (2005) https://doi.org/10.1016/j.jphotochem.2004.05.019