DOI QR코드

DOI QR Code

Substrate-free Biosensing using Brownian Rotation of Bio-conjugated Magnetic Nanoparticles

  • Published : 2006.12.31

Abstract

The recent development of bio-conjugated magnetic nanoparticles offers many opportunities for applications in the field of biomedicine. In particular, the use of magnetic nanoparticles for biosensing has generated widespread research efforts following the progress of various magnetic field sensors. Here we demonstrate substrate-free biosensing approaches based on the Brownian rotation of ferromagnetic nanoparticles suspended in liquids. The signal transduction is through the measurement of the magnetic ac susceptibility as a function of frequency, whose peak position changes due to the modification of the hydrodynamic radius of bio-conjugated magnetic nanoparticles upon binding to target bio-molecules. The advantage of this approach includes its relative simplicity and integrity compared to methods that use substrate-based stray-field detectors.

Keywords

References

  1. Gunter Schmid (Ed.), Nanoparticles: from theory to application, Wiley-VCH, Weinheim (2004)
  2. P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, and C. J Serna, J. Phys. D: Appl. Phys. 36, R182 (2003) https://doi.org/10.1088/0022-3727/36/13/202
  3. C. Liu, S.-H. Chung, Q. Jin, A. Sutton, F. Yan, A. Hoffmann, B. K. Kay, S. D. Bader, L. Makowski, and L. Chen, J. Magn. Magn. Mater. 302, 47 (2006) https://doi.org/10.1016/j.jmmm.2005.08.027
  4. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003) https://doi.org/10.1088/0022-3727/36/13/201
  5. P. Alivisatos, Nat. Biotechnol. 22, 47 (2004) https://doi.org/10.1038/nbt927
  6. V. Labhasetwar, and D. L. Leslie-Pelecky (Ed.), Biomedical applications of nanotechnology, Wiley-InterScience, (in press)
  7. D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, Biosens. Bioelectron. 13, 731 (1998) https://doi.org/10.1016/S0956-5663(98)00037-2
  8. R. L. Edelstein, C. R. Tamanaha, P. E. Sheehan, M. M. Miller, D. R. Baselt, L. J. Whitman, and R. J. Colton, Biosens. Bioelectron. 14, 805 (2000) https://doi.org/10.1016/S0956-5663(99)00054-8
  9. M. M. Miller, G. A. Prinz, S.-F. Cheng, and S. Bounnak, Appl. Phys. Lett. 81, 2211 (2002) https://doi.org/10.1063/1.1507832
  10. G. Li, V. Joshi, R. L. White, S. X. Wang, J. T. Kemp, C. Webb, R. W. Davis, and S. Sun, J. Appl. Phys. 93, 7557 (2003) https://doi.org/10.1063/1.1540176
  11. H. A. Ferreira, D. L. Graham, P. P. Freitas, and J. M. S. Cabral, J. Appl. Phys. 93, 7281 (2003) https://doi.org/10.1063/1.1544449
  12. P.-A. Besse, G. Boreo, M. Demierre, V. Pott, and R. Popovic, Appl. Phys. Lett. 80, 4199 (2002) https://doi.org/10.1063/1.1483909
  13. G. Mihaloviæ, P. Xiong, S. von Molnár, K. Ohtani, H. Ohno, M. Field, and G. J. Sullivan, Appl. Phys. Lett. 87, 112502 (2005) https://doi.org/10.1063/1.2043238
  14. F. Ludwig, E. Heim, S. Mauselein, D. Eberbeck, and M. Schilling, J. Magn. Magn. Mater. 293, 690 (2005) https://doi.org/10.1016/j.jmmm.2005.02.045
  15. Y. R. Chemla, H. L. Grossman, Y. Poon, R. McDermott, R. Stevens, M. D. Alper, and J. Clarke, Proc. Natl. Acad. Sci. USA 97, 14268 (2000)
  16. R. Kotitz. H. Matz, L. Trahms, H. Koch, W. Weitschies, T. Rheinlander, W. Semmler, and T. Bunte, IEEE Trans. Appl. Supercond. 7, 3678 (1996) https://doi.org/10.1109/77.622216
  17. A. Haller, S. Hartwig, H. Matz, J. Lange, T. Rheinländer, R. Kotitz, W. Weitschies, and L. Trahms, Supercond. Sci. Technol. 12, 956 (1999) https://doi.org/10.1088/0953-2048/12/11/378
  18. J. Connolly, and T. G. St Pierre, J. Magn. Magn. Mater. 225, 156 (2001) https://doi.org/10.1016/S0304-8853(00)01245-2
  19. P. C. Fannin, B. K. P. Scaife, and S. W. Charles, J. Magn. Magn. Mater. 72, 95 (1988) https://doi.org/10.1016/0304-8853(88)90276-4
  20. S. H. Chung, A. Hoffmann,, S. D. Bader, C. Liu, B. Kay, L. Makowski, and L. Chen, Appl. Phys. Lett 85, 2971 (2004) https://doi.org/10.1063/1.1801687
  21. A. Prieto Astalan, F. Ahrentorp, C. Johansson, K. Larsson, and A. Krozer, Biosens. Bioelectron. 19, 945 (2004) https://doi.org/10.1016/j.bios.2003.09.005
  22. M. I. Shliomis, Sov. Phys.-Usp. 17, 153 (1974) https://doi.org/10.1070/PU1974v017n02ABEH004332
  23. S. H. Chung, A. Hoffmann, K. Guslienko, S. D. Bader, C. Liu, B. Kay, L. Makowski, and L. Chen, J. Appl. Phys. 97, 10R101 (2005) https://doi.org/10.1063/1.1853694
  24. F. Bodker, S. Morup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994) https://doi.org/10.1103/PhysRevLett.72.282
  25. Liquid Research, LTD, UK
  26. Quantum Design, San Diego, CA, USA
  27. S. H. Chung, M. Grimsditch, A. Hoffmann, S. D. Bader, J. Xie, S. Peng, and S. Sun, (unpublished)
  28. C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976) https://doi.org/10.1063/1.322870
  29. Novagen, Madison, WI, USA
  30. N. M. Green, Adv. Protein Chem. 29, 85 (1975) https://doi.org/10.1016/S0065-3233(08)60411-8
  31. W. Weitschies, R. Kotitz, T. Bunte, and L. Trahms, Pharm. Pharmacol. Lett. 7, 5 (1997)