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Bayesian Change-point Model for ARCHD
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Abstract

We consider a multiple change point model with autoregressive conditional
heteroscedasticity (ARCH). The model assumes that all or the part of the
parameters in the ARCH equation change over time. The occurrence of the change
points is modelled as the discrete time Markov process with unknown transition
probabilities. The model is estimated by Markov chain Monte Carlo methods based
on the approach of Chib (1998). Simulation is performed using a variant of perfect
sampling algorithm to achieve the accuracy and efficiency. We apply the proposed
model to the simulated data for verifying the usefulness of the model.
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1. Introduction

In finance and financial time series analysis, the volatility is essential to
measure and forecast risks. The volatility of the financial time series has a
tendency to change over time. Thus, it is difficult to explain the volatility of the
series using the general time series and econometric models under the assumption
of constant variance. The ARCH(Autoregressive Conditional Heteroscedasticity)
model introduced in Engle (1982) has been proven to be very successful in
modelling the volatility of financial time series such as stock returns and exchange
rates. The ARCH model lets the conditional variance as the function of the
information set to model the volatility. Many models extending the ARCH have
been developed including GARCH(Generalized Autoregressive  Conditional
Heteroscedasticity Bollerslev (1986)), EGARCH(Exponential GARCH, Nelson (1991))
and so on. As an alternative to the ARCH type volatility models, Stochastic
volatility model in which the variance is specified to follow some latent stochastic
process is also widely used.
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In this paper, we focus on ARCH(q) models defined as follows:
q
Y. = Ve hy = p+ Zaiy?—i’ oy
i=1
where the ¢, are independent, identically distributed (usually Gaussian) errors with
zero mean and unit variance. The ARCH(q) processes with 4 >0, oy, e, 20 is

covariance-stationary if, and only if, the associated characteristic equation has all
roots outside the unit circle, (Engle, 1982 : Theorem 1). The stationary

(unconditional) variance is given by E(y?)=pu/(1— ia
i=1

The assumption of the parameter stability over time plays a important role in
statistical inference. If the parameters have changed within the observation period,
then forecasts lose accuracy and the parameter estimates provide meaningless
information. The existence and the location of change point might be very
important information to understand the data. Therefore, the detection of possible
changes in the data generating process has become an active area of research.

Kokoszka and Leipus (2000) studied the unknown change point problem for
ARCH models with CUSUM type estimator. Their estimator is defined as follows:

k= mink: |R|= max, . i<l B, (2)

where

Lyno_ N2
Rk'— n2 & Z} Y~ = kj“zk;-l (3)
The consistency of the estimator is proved and its rate of convergence is
established. Berkes et al. (2004) suggested a sequential detection scheme for the
parameter change in a GARCH(p,q) by considering the quasi-likelihood scores.

In this paper, we perform a Bayesian analysis of the multiple change point
ARCH model. The joint estimation of the parameters and the unknown change
point is done using the Markov chain Monte Carlo (MCMC). Geweke (1989)
implemented Bayesian inference on ARCH models with importance sampling, and
Geweke (1994) implemented using Metropolis—Hastings algorithm. Nakatsuma
(2000) proposed an MCMC method using a multivariate Metropolis—-Hastings
algorithm for Bayesian estimation of the ARCH/GARCH model. The
Markov-switching model, which is similar to the Bayesian change point model, for
ARCH process was proposed by Kaufmann and Frithwirth-Schanatter (2002). They
combined the results for hidden-Markov process (Chib, 1996) with those for
MCMC estimation of Nakatsma (2000). Kaufmann and Frithwirth-Schanatter (2002)
allowed only one parameter to be time-varying. They assumed the following the
switching ARCH model.
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v = Vhie (4)

hy =’y[t+alyt2—1+'"+aqy?—q )

Section 2 presents the Bayesian multiple change point ARCH model. In section
3, we explain the implementation and MCMC estimation of the model and shows
the small simulation result compared with CUSUM type estimator. The model
selection are also discussed. Conclusions are given in section 4.

2. Multiple change-point model for ARCH

We assume that the part or all of the parameters in the ARCH equation can be
changed at unknown change points. That is, we consider the following model, for
example, ARCH(1) case :

Y = \/h_t € 6)

hy = Nj+a1jyt2,—1 )

where j=1,--,7+1 when the number of change points is r. ARCH(q) can be
easily extended from the above equations. The multiple change point model has
generated an enormous literatures in many fields such as statistics and
econometrics. In this paper, we adopt the Bayesian change point model proposed
by Chib (1998). Chib’'s algorithm introduces a latent discrete state variable as the
state of the system at time ¢ which takes values on the integer 1,2,---,7+1,
when the number of change points is 7.

The wvariable s, is modelled as a discrete-state Markov process with the

transition probability matrix that specifies that s, can either stay at the current

value or jump to the next higher value. The one-step transition probability matrix
can be written as

P11P12 0 .-+ O
0 Paapaz-- 0
P=p: (7)
. O DPrr Prr+1
0 0 -0 1

where p; =Pr(s, =j | s,_, =1) is the probability of moving to state j at time ¢
given that the state at time t—1 is i if we specify r as the number of change
points. Note that there is only one unknown element in each row of P. The
model parameters and the unknown change points are sampled in a following
manner. The algorithm is implemented by simulating full conditional distribution.
e,P|lY,S, (8)
S 1Y,6,P 9)
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where © = {a,u} and S, = {s;,---,s,}. Firstly, the states S, are simulated given
data and the parameters, and next, the parameters are updated using the simulated
states. Simulation would be performed recursively. The change points can he
detected at the time points where the states have changed.

Chib’s method needs a prior specification of the number of change points, but it
enables the probability of jump to be nonconstant. The advantage of Chib’s
method is that it allows all of the change points to be sampled simultaneously
without a large increase in computations and so reduces the correlation between
the sampled change points. For more detailed procedures, refer to section 2 of
Chib (1998).

If ¢, ~ N(0,1), then the conditional distribution of ¥, is Gaussian with mean 0

and variance h,.

2
R S
f(yt I ,u/;a7)/t—1)— 27rht EXTD 2hf) 3 (10)
where ¥;= (y;,-,9,), o= (o,,,) and o;. = (o, 05,4,)-
The likelihood of ARCH(q) is
Y ma,P) =11 fly.! Yoo, P), 68))
i=1
n r+1
o= 1:[1 {kzlf(yt | Y. ma,Ps; = k)p(si =kl Yt—l’/"aa’P)}

We assume the following prior density for u; and «;;.

p(u,) ~ inverse I'(m;,m,) (12)

plog s y0g,1— iaij ~ Dirichlet (vy, -, v,4 1)
i=1

Note that the prior on a is selected to satisfy the constraints that all «;; are

positive and iai]— is smaller than 1. In Kaufmann and Frithwirth-Schanatter
i=1

(2002) and Kim et al. (1998), the same prior was used for ARCH and GARCH
models, respectively.

Since, both p;, and a have non-standard conditional posteriors Metropolis-
Hastings algorithm is used to generate the samples from the posteriors. But, it is
observed that the usual independent Metropolis-Hastings algorithm has some
difficulties in achieving the acceptable convergence. Hence, to achieve accurate and
efficient samples from the target density, ‘we use an imperfect variant of a perfect
sampling algorithm of the Metropolis-Hastings algorithm with an independent
candidate density (Corcoran and Schneider, 2005). The key idea of the perfect
sampling is to find a random epoch — 7', such that, if we construct sample paths
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from every point in the state space starting at — 7, then all paths will have
coupled successfully by time 0. The value at zero is considered as a draw from
the target density. Corcoran and Tweedie (2002) introduced the perfect sampling
Metropolis—-Hastings algorithm based on the backward coupling approach of Propp
and Wilson (1996). Corcoran and Schneider (2005) proposed an 'imperfect’ perfect
sampling algorithm which is useful when it is impossible or difficult to maximize
the ratio of certain densities.

3. Simulation results

In this section, we discuss the results of small simulations with the proposed
change point model and the Kokoszka and Leipus (2000)'s CUSUM type estimator.
The detection procedure by Berkes et al. (2004) requires rather large presamples
for the estimation of parameters, which are not necessary for the implementation
of our Bayesian method. Hence we only consider Kokoszka and Leipus (2000) for
the comparison.

We generate various ARCH(1) series of length 1,000 which have a change point
at the 500" or the 750" observation. For the estimation, the MCMC sampling is
conducted for 3,000 iterations beyond a transient stage of 1,000 iterations. The
posterior mode of the sampled change point candidates is considered as the
estimator of change point in the data. The parameters in (6) of the data
generation process (DGP) is following values:

Casel : Change at 500" obs., a: 0.1— 0.1, u: 1.0— 1.5,
Case2 : Change at 750" obs, a: 0.1— 0.1, p: 1.0 — 1.5,
Case3 : Change at 500" obs., a: 01— 01, p: 1.0—1.9,
Case4 : Change at 750" obs., o: 01— 0.1, p: 1.0— 1.9,
Case5 @ Change at 500" obs., a: 05— 0.1, p: 1.5— 2.7,
Case6 : Change at 750'" obs., a: 05— 01, p: 1.5—2.7,

Note that the unconditional variances of the series increase by 50% at the
specified change point for Casel and Case2. For Case3 and Case4, they increase
by 90%. In Caseb and Case6, the parameters are changed significantly, but the
unconditional variance does not vary. The frequency distribution of the respective
Cases are given in <Figure 1-6>.

As the model is assumed to have one change point, 5(50,0.1) is used for the
prior on p;; in (7), which is the probability of staying at state 1. This implies

that the prior beliefs assume that the duration would be approximately 500
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observations. We can observe that most of two estimators are distributed around
the real change point when the unconditional variance changes.
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< Figure 1> Histogram of the estimators for Case 1
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<Figure 2> Histogram of the estimators for Case 2
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<Figure 5> Histogram of the estimators for Case 5
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<Table 1> Summaries of estimators

Mean Median -S.D.

Casel Posterior mode 459.569 500 152.372

ase
CUSUM estimator 520.182 509 59.387
Posterior mode 604.913 745 282.375

Case2
CUSUM estimator 706.524 740 92.284
Posterior mode 502.195 502 37.721

Case3
CUSUM estimator 514.056 506.5 29.284
Posterior mode 749.112 752 48.156

Cased
CUSUM estimator 739.435 750 38.430
Posterior mode 451.550 495 146.170

Caseb
CUSUM estimator 362.338 355 181.073
Casch Posterior mode 562.026 728 297.903

ase
CUSUM estimator 430.286 4425 197.833

In the Casel and Case2, that is, when relatively small increase in variances
happens (from our model’s viewpoint, it is the small change in parameters), the
posterior mode may be unable to detect any change point for a few series. In case
of relatively large increase in variances, the posterior mode shows slightly better
performance than CUSUM type estimator. The results of the Caseb and Caseb
indicate big difference between two estimators. The CUSUM type estimator try to
detect change point using the difference of the unconditional variance before and
after change point. On the other hand, the proposed model detect change points by
obtaining the estimates of the model parameters and calculating the conditional
variance of the series. If the proposed model is applied to the data which has
change point in parameters with insignificant unconditional variance change, it
would improve the accuracy of the forecasts for the volatilities considerably. In
<Table 1>, we have the summaries of change point estimators for 6 cases.

Generally speaking, the number of change points is not known in real examples.
Since Chib(1998)’s Bayesian change point approach assumes that the number of
change points are known before the estimation, it is necessary to determine the
number of change points by comparing models with different number of change
points. The Bayes factor which is the ratio of marginal likelihoods of the two
models under comparison is the formal Bayesian model comparison criterion. The
Bayes factor for two models M; and M, is defined as
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p( }/n | Ml )
By, = ~——r 13
ANy 1
where p(Y,| «) is the marginal likelihood. The marginal likelihood is defined as,
p(Y,|M)= /p(Y 16, M)dp (6| M) (14)

where p(Y,16,M) is likelihood of observed data and p(#|M) is the prior

distribution of all parameters under model M.

4. Conclusion

In this paper, we discuss the Bayesian change point model for ARCH processes.
To detect the change point of parameters, we adopt the hidden Markov model in
which the transition probabilities of the hidden state are dependent on the regime.
For the more exact estimation of the model, we use an imperfect variant of a
perfect sampling algorithm. To show the applicability of the proposed model, we
perform simulations of various settings. The reasonable results are obtained from
the comparison with the CUSUM type estimator.
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