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Kernel Inference on the Inverse Weibull
Distribution
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Abstract

In this paper, the Inverse Weibull distribution parameters have been estimated
using a new estimation technique based on the non-parametric kernel density
function that introduced as an alternative and reliable technique for estimation in
life testing models. This technique will require bootstrapping from a set of sample
observations for constructing the density functions of pivotal quantities and thus
the confidence intervals for the distribution parameters. The performances of this
technique have been studied comparing to the conditional inference on the basis of
the mean lengths and the covering percentage of the confidence intervals, via
Monte Carlo simulations. The simulation results indicated the robustness of the
proposed method that yield reasonably accurate inferences even with fewer
bootstrap replications and it is easy to be used than the conditional approach.
Finally, a numerical example is given to illustrate the densities and the inferential
methods developed in this paper.
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1. Introduction

The purpose of this paper is to introduce a new parameter estimation procedure
in statistical inference for making inference on lifetime parameters or function
thereof directly from the data without any prior assumptions about the underlying
failure model parameters. This technique uses the non-parametric kernel density
estimation that asymptotically converges to any density function depending only
on a random sample, though the underlying distribution is not known and requires
fewer bootstrap replications to attain any level of accuracy. These properties make
the kernel estimation approach is a quite general and applicable to any problem
and that was the merit for using this function as a tool for estimation.

The statistical performances of the proposed kernel procedure have been
compared, via Mote Carlo simulation, to the performances of the classical
conditional inference based on the covering percentage and the mean lengths of
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the confidence intervals for the parameters. The simulation results indicated quite
improvement and accurate results, even when the number of bootstrap replications
is extremely small comparing to the conditional inference.

In this study, the kernel estimation has been applied for deriving the
unconditional distributions for pivotal quantities of the parameters with comparing
to those conditional distributions based on the classical conditional inference when

the experimental data are collected under complete samples from the Inverse
Weibull distribution (IWD) that has probability density function (pdf) given by :

flz)=aBf “z” lat 1)exp[— (xB)” ], z>0, 11
where a(>0) and B(> 0) are the shape and scale parameters respectively.

This distribution has been used extensively as a model in the analysis of life
testing data. The statistical inference for the IWD has been investigated by
several authors such as Calariba and Pulcini (1990, 1992) have been derived the
maximum likelihood estimators and the Bayes estimators for the parameters based
on complete and censored samples. Maswadah (2003) derived the conditional
confidence intervals for the parameters based on the generalized order statistics.
For a detailed discussion on various properties and uses of this distribution, see
Johnson et al. (1995).

2. Kernel Function
2.1 Basic Definitions

In this section, the basic elements associated with the kernel estimators of the
density function are presented, which has been extensively studied see, for
example Guillamon et al. (1998 1999). Also a good discussion for the kernel
estimation techniques can be found in Scott (1992). In the univariate case, the
general kernel estimator based on a random sample z,, z,, 3, , z,, of size n
from the random variable X with unknown probability density function f(z)and
support on (0, c) is given by

~ 1 & r—z; .
f(m)—mizl 3 ) 20

where h is called the bandwidth or smoothing parameter which chosen such

that A—0 and nh—oc as n—co. The role of the bandwidth 1is to scale for our
kernels, if it is large the density estimate could be too smooth, otherwise the
estimate could be too variable. Unfortunately, the choice of h is the main problem
of the kernel, where the optimal one is not known in general, it has been
investigated by several authors such as Terrell (1990) and Jones (1991) they
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concluded that, for a large amount of data, the mean integrated squared error of
f(z) is minimized when h= Con~"?, where the estimated value of the population
standard deviation o could be used with different choices: Firstly, it could be used
as the sample standard deviation, and C'=1.06 see Abramson (1982). Secondly, it

could be used as the inter-quintile range which is defined as R= Xi750) — XL25u]»

and C=0.79. Finally, it could be used as A =min(S, R/1.34), and C=0.9. It
is worthwhile to say that these different values of h give approximate results |,

—-0.2

however the optimal one is h=1.059¢ n~ %2, which is used in our simulations

where ¢ is the sample standard deviation.
The kemel function A is a symmetric probability density function on the entire
line and satisfies the following conditions:

/K(u)du= 1 ,/u[{(u)du=0 and quK(u)du< o0,
The role of K is to spread out the contribution of each data point in our

estimate of the parent distribution and the estimate f(:r) is bin-independent
regardless of the choice of A. Though there are variety of kernel functions with
different properties have been used in the literature, but an obvious and natural
choice of K is the standard Gaussian kernel, for its continuity, differentiability,
and locality properties.

2.2 Kernel Estimates

We propose a simple and tractable algorithm for estimating the density functions
of the pivotal quantities based on the kernel estimate as the following:
1. Let =z, z,, x5, ,2, be a random sample of size n from the random
variable X, whose pdf is f(z;0), where 6 represents the unknown parameter
with support on (0, ).

2. Bootstrapping with replacement n samples X; , X, ,X; ,-,X, of size n
from the given random sample in step 1, where X, = (z;, zy, x5, .z,
for i=1,2,--,n.

3. For each sample in step 2, calculate the pivotal quantity Z for the parameter
6 based on its maximum likelihood estimator. Thus we have an objective
and informative random sample 7, Z,, Z;, -+ , Z, of size n, which constitute
the sampling distribution of the pivotal Z .

4. Finally, based on the informative sample in step 3 we can use the kernel
estimator (2.1) for estimating ¢(z) at any given value for the pivotal Z
thus the probability interval estimates for the pivotal and the confidence
interval for the unknown parameter # can be derived.
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Utilizing the above algorithm, the kernel estimator of the quantile Z,, of order

i
p, for Z can be derived as:

I I o A
G(zl,)—/:)g(z)dz— nhi;fu](( - )dz p

Zf Zp— Z/‘

i=1

Thus

where
H(fl?l ,$2)= flK(y)dy

For deriving the value of the quantile estimator Z,, equation (2.2) can be solved

recurrently as the limit of the sequence {Z 2y, 2y ,} that defined by the

formulas
— n _ _ n ZI 2,___ ZI
Zl_—‘i ZI 7Zr+1: Z,+CTLP—ZH(“_a )} for r=1,2,3,
=1 i=1 h h

(2.3)

. .. 2h

The convergence of (2.3) is guaranteed by the condition 0< C < -

1

where L,= K(0), see Kulczycki (1999).

The central rule for applying this technique is deriving the MLEs of the IWD
parameters 0= (a,3) based on the complete sample, which are the solutions of
the two equations:

B= (En]x; o /p)tfe (2.4)

i=1
%— Min(z)+ndz; %In(z,)/ Y, z,°=0 (25)
i=1 i=1 i=1
Using an iterative technique such as Newton-Raphson method for solving (2.5),
we can derive the MLE for o and then for 8 from (2.4).

3. Conditional Inference

In this section we outline the key ideas for deriving the conditional confidence
intervals for parameters of the IWD distribution based on the conditional inference.
For more details about this method see Lawless (1982), who used the conditional
distributions for pivotal quantities of the parameters given the ancillary statistics
as tools for estimating the parameters.

Let Z,=a/a, Z,=(8/ B)* be pivotal quantities for the parameters o and Jej
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respectively, depending on their maximum likelihood estimators & and 3 and
a; = (wiﬁ)‘; for i=1,2,--,n are the ancillary statistics. Make the change of
variables from (z,,zy,23, -~ ,3,) whose pdf is (1.1) to (@,B,a;,a9, > a,_,).

This transformation can be written as z,= B_la}/a, i=1,2,--,n—2,

2, 1=p"'al%, , and z, =5 'a"/°, where o, and a,_, can be expressed in
terms of a,a,,:- ,a,_,. The Jacobian of this transformation is independent of Z,
and Z,. Making further the change of variables from (&,B,al,aQ,w ,Q,_4) to
(Z,,2y,0,,0y,- ,a,_,), the Jacobian of this transformation is proportional to

1/2,2,.

Finally the conditional pdf of Z, and Z, given A=/(a,,ay, - ,a,_,) can be
derived as

1(2,2,14)=czr 1z ”Z‘lﬂa exp(— 2, 7Y a; ),
i=1 i=1

where C is normalizing constant independent of Z, and Z,.

The marginal densities of Z; and Z,, conditional on A are given respectively
as:

91(Z,14)= CcTr(n)zy~ 21_[ ;A E a; ) (3.1

=1 i=1
9:(Z,1 4) = Cf zZr 'z, nZ‘el]:[la_Zexp Enj ')dz, (3.2)
where _
C '=TI(n) / Z”‘L)I__I; ¢ E N ‘) "dz,
From (3.1) and (3.2) we can derive the desired probabilities for Z, and Z, and

then the confidence intervals for the parameters a and B which are (&Lzl,&U 7)

and (ﬂLl/ “ BUY a respectively, where L, and U, are the lower and upper
2 4

confidence interval limits for Z, and Z,.

4. Simulation Study and Comparisons

The statistical performances of the proposed procedure have been compared, via
Monte Carlo simulation, to the performances of the classical conditional inference
in terms of the covering percentage (CP), which is defined as the fraction of
times the confidence intervals cover the true value of the parameter in repeated
sampling and their average lengths. The comparative results, based on 1000 Monte
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Carlo simulations are given for samples of sizes n= 20(20)100 which have been
generated for values of scale parameter 8=2 and the shape parameter o = 3.

The simulation results in <Tables 1-2> are quite favorable to the proposed
procedure. Firstly, it indicated the mean lengths of the 90% and 95% confidence
intervals based on the kernel are too close for one decimal places to the ones
based on the conditional inference for the parameter «, but for the parameter 3
the mean lengths are smaller than those for the conditional inference and getting
smaller as the nominal levels and sample sizes increase. Secondly, despite the
intervals based on the conditional inference for the parameter 3 are wider than
those based on the proposed procedure, however the covering percentage based on
the kernel is much greater for all sample sizes for both parameters, and it
increases as the nominal level increases even for small samples. Thus the
simulation results indicated a good improvement for the kernel estimates as the
sample sizes increase and it can perform well and attain reasonably accurate
inferences even when the number of bootstraps is extremely small up to 20
replications.

<Table 1> The Kernel and conditional mean length of intervals (MLI) for
Z, and «, the covering percentage (CP) of the 90% and
95% confidence intervals for «.

MLI (Z)) MLI (a) CP (a)
90% 95% 90% 95% 9%  95%

Approaches n

20 05031 06961 19908 23392 0943 0998
40 04314 05125 13682 16249 0949 0.987
Kemel o) 03490 04142 10855 12883 0918 0967
80 03018 03586 09303 11054 0914 0.961

100 0.2688 03193 0.8267 09821 0932 0.969

20 05728 06824 1.8281 21781 0859 0.946

40 04055 0.4831 1.2528 1.4925 0.894 0.950
Conditional
60 03313 03948 1.0133 1.2073 0.898 0.953

80 028069 03418 0.8727 1.0398 0910 0.958
100 0.2567 0.3058 0.7792 09285 0916 0.951
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<Table 2> The Kernel and conditional mean length of intervals (MLI) for
Z, and B3, the covering percentage (CP) of the 90% and

95% confidence intervals for 8.

MLI (Z,) MLI(S ) CP(B)

Approaches n
90% 95% 90% 95% 90% 95%

20 11092 13332 06291 07629 0955 0.992
40 06587 07915 04109 04934 0960 0990
Kermel 60 05163 06180 03290 03935 0938 0979

80 04366 05204 0.2184 03379 0930 0973

100 03835 04574 0.2484 02962 0926 0.968

20 08702 1.1219 05447 06859 0904  0.959

40 05832 06809 03765 04405 0901 0946
Conditional
60 05216 06162 03359 03962 0920 0.956

80 05459 0.6139 03447 03888 0938 0972
100 05631 0.6133 0.3503 03837 0948 0.972

5. Numerical Example

Consider the data given by Dumonceaux and Antle (1973), represents the
maximum flood levels ( in millions of cubic feet per second) of the Susquehenna
River at Harrisburg, Pennsylvenia over 20 four-year periods (1890-1969) as:

0.654, 0613, 0315 0449, 0297, 0402, 0379, 0423, 0.379, 0.324, 0.269,
0.740, 0418, 0412, 0.494, 0416, 0338, 0.392, 0.484, 0.265.

The MLE for the parameters o« and [ based on this data are given
respectively as 4.3138 and 2.7906.

Thus for the purpose of comparison, the 90% and 95% probability intervals for
the pivotal Z, and Z, are derived based on the kemel and the conditional
approaches. The results in <Table 3> have been indicated the probability
intervals for the pivotal quantities Z, and Z,, and the corresponding confidence

intervals for @ and @, based on the kernel approach are shorter than the ones
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based on the conditional inference, which ensure the simulation results. In <Figure
1> the posterior densities of Z,; based on the two approaches are quite identical in

symmetric shape. <Figure 2> indicated the pdf for Z, based on the kemel

approach 1s quite symmetric, on the contrary the ones based on the conditional
approach is right skewed which ensure the increasing length of intervals for Z,

and thus for 8 in the simulation results.

<Table 3>: The Lower (LL) and the Upper limits (UL) and the lengths of
the 90% and 95% confidence intervals (CI) for the parameters
Z,, Zy and thus for «, 3 using the kernel and the Conditional

approaches based on the flood data.

Kernel approach Conditional approach

cI 90% 95% 90% 959
Par. LL UL 1L UL LL UL LL UL
06718 12256 06293 12669 06966 12556 06515 13176

4 (0.5538) (0.6377) (0.5591) (0.6661)
28082 52874 27149 54660 30051 54171 28109 56845

* (2.3891) ©27511) (2.4119) (2.8736)
, 05572 12223 04972 L2l 06576 15k 05908 LTI

(0.6651) (0.7809) (0.8706) (1.1175)
24368 20235 23733 29539 25322 30788 24788  3.1632

B (0.4867) (0.5806) (0.5466) (0.6844)

( The values in parentheses are the length of intervals)

6. Conclusion

Kernel estimation technique constitutes a strong basis for statistical inference
and it has a number of benefits relative to the usual conditional procedure. First,
it is easy to be used and it does not need tedious work as the conditional
inference. Second, it can perform well even when the number of bootstraps is
extremely small up to 20 replications. Finally, it is uniquely determined on the
basis of the information content in the pivotal quantities.

Thus, from the results of this paper kernel inference strengthens traditional
inference statements and allows construction of alternative stronger types of
inferences than the conditional inference and will encourage the statisticians for
using this method.
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<Figure 1> The pdf of the pivotal Z, based on the kernel and conditional

inferences
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<Figure 2> The pdf of the pivotal Z, based on the kernel and conditional

inferences
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