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Fractional Integration in the Context of Periodicity:
A Monte Carlo Experiment and an Empirical Studyl

Luis A. Gil-Alana?

Abstract

Recent results in applied statistics have shown that the presence of periodicities
in time series may influence the estimation and testing of the fractional
differencing parameter. In this article, we provide further evidence on the issue by
using several procedures of fractional integration. The results show that in the
presence of periodicities, the order of integration can be erroneously detected. An
empirical application in the context of seasonal data is also carried out at the end
of the article.

Keywords . Fractional integration; seasonality; long memory, JEL classification;
Cl15.

1. Introduction

Time series data occur commonly in the natural and engineering sciences,
economics and many other fields of enquiry. A typical feature of such data is
their apparent dependence across time, for example, sometimes records close
together in time are strongly correlated. This paper focuses on which is usually
called ‘long range dependence’, so-named because of the strong association
between observations widely separated in time. Then, the autocorrelations decay
very slowly at a hyperbolic rate. Recent theoretical results in probability and
statistics have directed applied scientists to develop new methods for detecting the
presence of long range dependence in time series. This characteristic has been
found to be present by many authors in hydrology (e.g., Hurst, 1951, Montanari et
al, 1996); economics (Diebold and Rudebusch, 1989; Baillie, 1996); high speed
networks (Beran et al., 1995; Willinger et al., 1995) and other areas. A useful
model to describe this type of behaviour is the fractionally integrated model. We
say that a time series {z,,t=1,2,---} is integrated of order d, (and denoted by
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z, ~ 1(d)) if ‘
(1-L)'z,=u,t=1,2,--, 1)
z;=0,t<0
where u, is an I(0) process, defined for the purpose of the present paper as a
covariance stationary process with spectral density function that is positive and
finite at the zero frequency. Clearly, if d=0 in (1), z, =u, and a ‘weakly
autocorrelated’ (e.g., ARMA) z, is allowed for. However, if d >0, z, is said to be

a long memory process, also called ‘strongly autocorrelated’, and, as d increases
beyond 0.5 and through 1, z, can be viewed as becoming "more nonstationary”, in

the sense, for example, that the variance of partial sums increases in
magnitude.-Models with d ranging between -05 and 0 are short memory and
have been addressed as anti—persistent by Mandelbrot (1977) because the spectral
density function is dominated by high frequency components—. These processes
were initially introduced by Granger (1980, 1981), Granger and Joyeux (1980) and
Hosking (1981), and were theoretically justified in terms of aggregation of ARMA
processes with randomly varying coefficients by Robinson (1978) and Granger
(1980).

The fractional differencing parameter d plays a crucial role in describing the
intensity of the association between the observations. Thus, if d€(0, 05), z, is
covariance stationary and mean-reverting; if 4<[05 1), =z, is no longer
covariance stationary but it is still mean-reverting, with the effect of the shocks
dying away in the long run; finally, if d>1, =z, is nonstationary and
non-mean-reverting.

There exist many ways of estimating and testing the fractional differencing
parameter. Many of the estimators are graphical in nature (heuristic estimators)
while some involve numerical minimization of a likelihood-type function (e.g., Fox
and Taqqu, 1986; Dahlhaus, 1989; Sowell, 1992; Smith et al., 1997, Hauser, 1999;
etc.). However, several papers conducted by Montanari, Rosso and Tagqu (1995,
1996, 1997) in a hydrological context, showed that the presence of periodicities
might influence the reliability of the estimators. Analyzing the series of the
monthly flows of the Nile River at Aswan, these authors found that many
heuristic estimators gave a positive value for d, indicating long memory where
none was present. In another recent paper, Montanari, Taqqu and Teverowsky
(1999) performed an extensive Monte Carlo investigation in order to find out how
reliable the estimators of long memory are in the presence of periodicities, and
they concluded that the best results were those obtained using likelihcod-type
methods.

In this paper, we further examine the above-mentioned issue by means of
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procedures for estimating and testing the fractional differencing parameter. We
tried first with various classical methods (Lo's, 1991, modified R/S statistic;
Sowell’s, 1992, maximum likelihood, and Geweke and Porter-Hudak, GPH, 1983)
and the results were very similar to those reported across the paper. We
concentrate on two methods proposed by P.M. Robinson. The first is a parametric
testing procedure (Robinson, 1994a), which is supposed to be the most efficient
one when directed against the appropriate (fractional) alternatives. The second is
semiparametric and is a Whittle estimator in the frequency domain (Robinson,
1995a).

The outline of the paper is as follows. In section 2 we briefly describe the
procedures for estimation and testing of long memory processes. Section 3
contains the Monte Carlo experiments. An empirical application based on seasonal
monthly data is carried out in section 4, while section 5 contains some concluding
comments.

2. Procedures for long memory

There exist many approaches for estimating and testing the fractional
differencing parameter d. Earlier studies tested the long memory hypothesis using
the rescaled-range (R/S) method, suggested by Hurst (1951), and defined as

max; < ;< Té(xt"i)_minlsj‘s Ti:(xt_g)
t=1 t=1

1

2

R\ S=

1 &

- Y
5@
where z is the sample mean of the process z,. The specific estimate of d

(Mandelbrot and Wallis (1968)) is given by:

Ge log(A\S) 1
log T’ 2°

Its properties were analyzed in Mandelbrot and Wallis (1969), Mandelbrot (1972,
1975) and Mandelbrot and Taqqu (1979). Beran (1994) provides a neat explanation
of how to implement the R/S procedure. A problem with this statistic is that the
distribution of its test statistic is not well defined and is sensitive to short-term
dependence and heterogeneities of the underlying data generating process. Lo
(1991) developed a modified R/S method which addresses these drawbacks of the
classical R/S method.

Another method, widely used in the empirical work is the one proposed by
Geweke and Porter-Hudak (GPH, 1983), which is a semiparametric procedure to
obtain an estimate of the fractional differencing parameter d based on the slope of
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the spectrum around the zero frequency. This method, however, has some potential
problems. First, it is too sensitive to the choice of the bandwidth parameter
numbers, and, in the presence of short range dependence, such as autoregressive
or moving average terms, the GPH estimator is known to be biased in small
samples (see, e.g. Agiakloglou et al., 1992).

In the context of parametric approaches, Sowell (1992) analyzed the exact
maximum likelihood estimates of the parameters of the fractionally ARIMA
(p,d, q) model

SLYQ—L)Y z,=0(L)e, t=1,2,-, )
where ¢(L) and 6(L) are polynomials of orders p and q respectively, with all
zeroes of ¢(L) and @(L) outside the unit circle, and ¢, is white noise. He uses a
recursive procedure that allows quick evaluation of the likelihood function in the
time domain, which is given by

(27)” T/2IEI' 1/2 exp(— %X’T_EXT)

where X;=(z,,2,, -~ ,z7) and X~ N(0,%).

Other parametric methods of estimating d based on the frequency domain were
proposed among others by Fox and Tagqu (1986) and Dahlhaus (1989). Small
sample properties of these and other estimates were examined in Smith et al
(1997) and Hauser (1999). In the first of these articles, they compare several
semi—parametric procedures with the maximum likelihoed estimation method of
Sowell (1992), finding that Sowell's (1992) procedure outperforms the semipara
-metric ones in terms of the bias and the mean square errors. Hauser (1999) also
compares Sowell's (1992) procedure with others based on the exact and the
Whittle likelihood function in the time and in the frequency domain and shows
that Sowell’s (1992) dominates the others in case of fractionally integrated models.

In this article we use both parametric and semiparametric methods. First, we
present a parametric testing procedure due to Robinson (1994a) that permits us to
test Z(d) statistical models in raw time series.

2.1 A parametric testing procedure

Robinson (1994a) proposed a Lagrange Multiplier (LM) test of the null
hypothesis:

H,: d=d, (3

in a model given by (1) and (2) for any real value d,. Specifically, the test

statistic is given by:
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R=ZLiia (@)
g
where T is the sample size and

. g lol - . or Tl .

a= — j;w(xj)g(xj;r) ) o -7 X (5 7))

R 9 (1= ) =1 R , -1 ~ ’~1 -1

A= 7(,-;1/)0\1) _J;w(/\j)eo\j) X j;e(kj)e(A]—) ><j:1e(>\j)¢(>\1)
d)()\j)=log QSin—Qi ; g(Aj)= —;—Tlogg()\;;); A= -%TJ; 7= argmino’ (7)

I(j) is the periodogram of w, evaluated under the null, ie., u,= (1—L)d"wt and ¢

above is a known function of the spectral density of w,,
2
f()\;UQ;T)=;—7Tg(/\;T), —r<A<T.

These tests are purely parametric and therefore, they require specific modeling
assumptions regarding the short memory specification of u,. Thus, if w, is white
noise, g=1, and if u, is an AR process of form ¢(L)u, =e¢,, then, g=I|p(e™)™?,
with ¢% = V(e,), so that the AR coefficients are a function of 7.

Based on A, (3), Robinson (1994a) established that under certain regularity
conditions:

R—,x} as T—o. (5)

Thus, unlike other procedures, we are in a classical large-sample testing
situation by reasons described in Robinson (1994a), who also showed that the
tests are efficient in the Pitman sense against local departures from the null. A

test of (3) will reject H, against the alternative H,: d = d, if R> Xi .

where P(xi,. > xi)=oa.
2.2 A semiparametric estimation procedure

There exist several methods for estimating the fractional differencing parameter
in a semiparametric way. Examples are the log-periodogram regression estimate
(LPE), initially proposed by Geweke and Porter-Hudak (1983) and modified later
by Kiinsch (1986) and Robinson (1995b), the average periodogram estimate of
Robinson (APE, 1994b) and a Whittle estimator (Robinson, 1995a) which we are
now to describe.

The semiparametric method of Robinson (1995a) is basically a ‘Whittle estimate’
in the frequency domain, considering a band of frequencies that degenerates to
zero. The estimate is implicitly defined by:
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d= argmin , (log c(d) - 2d— Zlog A ) 6)
]—1

T=L3x I _ 2 m_

= 21 7 0

j =1
where I();) is the periodogram of the raw time series, z;, given by:

Z z,e’
t=1
and d€ (~0.5,0.5)%.. Under finiteness of the fourth moment and other mild
conditions, Robinson (1995a) proved that:

Vm (d—d,) —, N0,1/4) as T—oo.

where d, is the true value of d and the additional requirement that m-—oo

2

;) = 27rT

slower than 7.

3. A Monte Carlo experiment

In this section we want to examine if the estimation of the fractional
differencing parameter d 1s affected by the presence of periodicities in the data.
For this purpose, we simulate a seasonal process defined as the solution of:

(1-¢L)z,= ¢ )]
where L° is the seasonal lag-operator (L°z,=z,_,); ¢ is the seasonal
autoregressive coefficient that takes values 0.5, 0.7 and 0.9; s is the period of the
seasonality (s = 4, 12, 16 and 24) and ¢, is white noise (i.e., uncorrelated and
zero-mean noise). We generate Gaussian series using the routines GASDEV and
RANS3 of Press et al. (1986), with 5000 replications of each case. Clearly, for this
type of series, d should be equal to O since long-range effects are not present.

First, we examine the performance of the parametric procedure of Robinson
(1994a). Thus, the alternatives are of form as in model (1) with d = 0.1, (0.1), 1
and the disturbances are initially white noise. In this case, the functional form of
the test statistic greatly simplifies, adopting the form:

R= —dA a €]

a= %anl ); o= E[ Zz—(2¢ )

j=1

The results based on R in (8) are given in <Table 1>. We observe that if 7T is
small, (eg.,, T = 120), the rejection frequencies are very small with 4 = 0.1,
ranging between 0.292 (with ¢=0.5 and s=4) and 0516 (with ¢=0.9 and
s=4). If d=0.2, the values never exceed 0.800. However, if d = 0.5, they are
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<Table 1> Rejection frequencies of Robinson’s (1994a) tests with white

noise disturbances. (5,000 replications were used in each case)
T=120

é S |01 ] 020304 (05| 06|07 ]| 08] 09 1
4 102920683 |0961|0.999 | 1.000{ 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12 | 0.388]0.724 { 0935 | 0.987 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
16 | 0.388 | 0.721 | 0.937 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 { 1.000
24 | 0.367 { 0.726 | 0.931 { 0.989 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
4 0399|0714 | 0961 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12 {0470 | 0.734 [ 0.919 | 0.970 | 0.989 | 1.000 |{ 1.000 | 1.000 | 1.000 | 1.000
0.7 | 16 |0.483]0.739 | 0.916 | 0.974 | 0.996 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000
24 0427 | 0.722 | 0.908 | 0.975 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
4 0516 | 0.729 | 0.971 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12 | 0511 | 0.737 | 0.870 | 0.929 | 0.969 | 0.981 | 0.990 | 0.997 | 0.999 | 1.000
09 | 16 | 0510|0738 | 0.865 | 0.947 | 0.981 | 0.993 | 0.999 | 1.000 | 1.000 | 1.000
24 | 0.472 | 0699 | 0.870 | 0.951 | 0.986 | 0.998 | 0.999 | 1.000 | 1.000 | 1.000
T= 240
¢ S | 0102|0304 05| 0607/ 08]09 1
4 03190881 [ 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12 10502 | 0.945 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

05

05 16 | 0517 0.938 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10546 | 0.939 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
4 0385|0840 | 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0 12 105720911 | 0.995 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
g 16 | 0599|0913 | 0.993 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10597 (0915 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
4 |0.604|0.857|0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12 1 0.680 | 0.865 | 0.956 | 0.989 | 0.998 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000
09 16 | 0.649 | 0.866 | 0.963 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10.649 | 0.866 | 0.963 | 0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
= 360

S 0.1 0.2 0.3 04 | 05 0.6 0.7 0.8 0.9 1
4 ]0.342 | 0.954 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12| 0.602 | 0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
05 16 | 0.653 | 0.987 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10645 | 0.982 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
4 10.383]0.919|1.000 | 1.000 { 1.000 | 1.000 | 1.000 ; 1.000 | 1.000 | 1.000
1210628 | 0.976 | 1.000 | 1.000 } 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
07 16 | 0.675| 0.976 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10.673 10959 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 }{ 1.000 | 1.000 { 1.000
4 10.59110.900 | 0.998 [ 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
09 1210699 | 0.925 | 0.990 | 0.997 | 1.000 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000

16 ] 0741 | 0.923 | 0.934 | 0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10.7151 0911 | 0.986 ] 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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<Table 2> Rejection frequencies of Robinson’s (1994a) tests with AR(1)
disturbances. (5,000 replications were used in each case)

T=120
) S (0110203040506 ]07]08]09 1
4 10.217]0.3230.604 | 0.847]0.957 | 0.989 | 0.999 | 1.000 | 1.000 | 1.000
12 10.322|0.535]0.740 | 0.891 | 0.955] 0.983 [ 0.992  0.999 | 0.999 | 1.000
16 (0.302]0.525]0.735]0.877{0.9430.976 | 0.991 | 0.997 | 1.000 | 1.000

05

24 103120487 0.708 | 0.858 10.935 | 0.975 | 0.989 | 0.999 | 0.999 | 1.000
4 10.354(0.414]0.6550.855 | 0.962 | 0.990 | 0.999 | 1.000 | 1.000 | 1.000
12 10.445|0.62710.778 | 0.883 | 0.938 ] 0.969 | 0.985 | 0.991 | 0.995 | 1.000

07 16 [0.4420.602 {0.767 | 0.859 {0.929 | 0.958 | 0.977 | 0.991 | 0.995 | 1.000

24 10.387]0.554(0.710}0.835|0.911 [ 0.964 | 0.982 ] 0.995] 0.999 | 1.000
4 10.567(0.647]0.794]0.901 | 0.963 | 0.997 | 0.999{0.999 | 0.999 | 1.000
12 10.623 [0.750 1 0.820 | 0.875]0.911 | 0.9330.951 | 0.969 | 0.983 | 0.991
16 |0.56210.702|0.790 | 0.847 | 0.901 | 0.932{0.961 | 0.975 | 0.987 | 0.995
24 10.481{0.60310.719]0.814 | 0.886 | 0.942 [ 0.967 | 0.986 | 0.993 | 0.998
T=240
¢ S {01 10203 ]04]05]106]07] 08109 1

0.9

4 10.236 0.5;54 0.7.50 0.960 | 0.996 1.600 1.000 1.600 1.600 1.000
12 10.328|0.691 {0.937]0.996 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
16 10.35010.691[0.923|0.984 |0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

05

24 [0.36210.706 | 0.915[0.985 | 0.998 { 1.000 [ 1.060 | 1.000 | 1.000 { 1.000
4 104620.415|0.7330.953]0.995 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12 10.413]0.752]0.937{0.991 | 1.000 | 1.000 } 1.000 | 1.000 | 1.000 | 1.000
16 [0.457|0.735]0.910 | 0.975(0.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10.4700.727 | 0.8960.970] 0.997 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
4 10.604[0.636]0.832 | 0.960 | 0.995 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
12 ]0.64410.839]0.935]0.964 | 0.982 | 0.995 [ 0.996 | 0.998 [ 0.998 | 0.999
16 [0.625|0.7930.896 | 0.946 | 0.975 | 0.987{0.998 | 1.000 | 1.000 | 1.000
24 10.587]0.75510.872]0.930 ] 0.975 | 0.992 | 0.998 | 1.000 | 1.000 | 1.000
= 360
) S 101 ]02]1]03]04]05 06107 ] 087109 1

4 10.2640.377|0.880 | 0.998 11.000  1.000 | 1.000 ] 1.000 | 1.000 | 1.000
12 10.32610.8040.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
16 [0.352|0.8200.992 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
24 10.406!0.8320.976|1.000]1.0001.000|1.000|1.000]1.000 |1.000
4 ]0.531[0.387]0.819]0.993 [ 1.000 | 1.000 | 1.000 ] 1.000 {1.000 | 1.000
12 10.427]0.816{0.984 | 1.000 | 1.000 ] 1.000 | 1.000 | 1.000 | 1.000 | 1.000

0.7

0.9

0.5

07 16 [0.4590.83310.9760.958 {1.000 | 1.000]1.0001.000 | 1.000 | 1.000

24 10.513[0.834]0.958 |0.9950.999 [ 1.000 | 1.000 | 1.000 | 1.000 | 1.000
4 10.672]0.629|0.863]0.982|1.000 | 1.000 | 1.000 { 1.000 | 1.000 | 1.000
12 10.624|0.8720.962{0.987 {0.995 | 0.999 | 0.999 | 1.000 | 1.000 { 1.000
16 [0.655]0.876]0.940{0.982 |0.992 ] 0.997 | 1.000 | 1.000 | 1.000 | 1.000
24 10.663]0.82510.923(0.963]0.988]0.997 | 1.000 | 1.000 | 1.000 | 1.000

09
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<Table 3> Rejection frequencies of Robinson’s (1994a) with seasonal

AR(1) disturbances.(5,000 replications were used in each case)

=120

01 102 {03 0405060708109 1

0.5

0.28910.697 1 0.952 1 0.999 | 1.000 | 1.000 | 1.000 { 1.000 { 1.000 { 1.000

12

0.278 1 0.692 | 0.938 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

16

0.296 | 0.682 | 0.936 | 0.997 [ 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

24

0.284]0.684 1 0.930 { 0.998 | 1.000 | 1.000 | 1.000 ] 1.000 | 1.000 | 1.000

0.7

0.28010.702 { 0.951 | 0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12

0.28410.68910.93310.993 | 1.000 | 1.000 | 1.000 | 1.000 { 1.000 | 1.000

16

0.312]0.667 | 0.925 [ 0.991 | 0.999 | 1.000 | 1.000 | 1.000 |{ 1.000 | 1.000

24

0.29310.676{0.917{0.9921.000 { 1.000 1.000 | 1.000 | 1.000 | 1.000

0.9

0.29810.714 ] 0.942 1 0.993 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12

0.32710.6710.894 | 0.973]0.993 | 0.998 | 0.999 | 0.999 | 1.000 | 1.000

16

0.3550.6570.874 | 0.961 | 0.995 | 0.999 | 0.999 | 1.000 | 1.000 | 1.000

24

0.304 [ 0.661 | 0.894 | 0.976 ] 0.998 | 1.000 ] 1.000 | 1.000 | 1.000 | 1.000

T'=240

01 10203 04|05 )06 |07 08109 1

0.5

0.4510.953 | 1.000 | 1,000 | 1,000 | 1,000 | 1.000 | 1,000 | 1,000 | 1,000

12

0.456 { 0.945]1.000] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

16

0.439]0.948 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

24

0.452 10.9431.000 { 1.000 | 1.000 | 1.000 { 1.000 | 1.000 { 1.000 | 1.000

0.7

0.460]0.954 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12

0.469 | 0.940 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

16

0.4530.939]0.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

24

0.46710.930 ] 0.999 | 1.000 | 1.000 | 1.000 ] 1.000 | 1.000 | 1.000 | 1.000

0.9

0.4870.94710.999 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12

0.48910.925]0.995]1.000 | 1.000 | 1.000 | 1.000 | 1.000] 1.000 | 1.000

16

0.48710.90310.993 {1.000 { 1.000 { 1.000 | 1.000} 1.000 | 1.000 | 1.000

24

0.490 [ 0.904 | 0.595]0.999 | 1.000 | 1.000 | 1.000 ] 1.000 | 1.000 ! 1.000

= 360

01 {02 | 0310405106 107108109 1

0.5

0.632]0.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12

0.626 | 0.995]1.000 | 1.000 | 1.000 | 1.000 | 1.000 ] 1.000 | 1.000 | 1.000

16

0.62310.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

24

0.62710.994 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

0.7

0.63210.994 | 1.000 ] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12

0.62210.993 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

16

0.62710.989 {1.000 { 1.000 | 1.000 | 1.000 { 1.000 | 1.000 | 1.000 | 1.000

24

0.613]0.990 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

0.9

0.6450.996|11.000 ] 1.000 ] 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

12

0.617]0.980 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

16

0.64019.97711.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

24

0.60710.969]1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
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higher than 0.950 in all cases. Thus, using this version of the tests of Robinson
(1994a), we observe that the tests will not reject the long memory hypotheses in
some cases although this characteristic is not present in the data. Increasing the
sample size, the rejection probabilities also increase. Thus, for example, if 7= 240,
the values corresponding to d =0.1 range between 0.319 and 0.680 and, if 7= 360,
they are between 0.342 and 0.741. In the latter case, however, the rejection
probabilities are practically 1 if d = 0.3.

Next, in <Tahle 2>, we perform the same experiment but assuming that the
disturbances follow a non-seasonal AR(1) process. Here, the values are smaller
than in the previous case and the rejection frequencies are smaller than 0.900 in
some cases with T=120 even for d=0.4. Similarly to <Table 1>, the values
improve with 7. However, values strictly smaller than 1 are obtained in some
cases even for values of d higher than 0.5. Therefore, using this version of the
tests, the results also tend to produce non-rejections of long memory when this
hypothesis is not present in the data. Finally, we correctly assume that the
disturbances are seasonally AR, and the results are displayed in <Table 3>. As
expected, the values are now higher than in the previous cases, though we still
observe low values when d is relatively low, especially for small sample sizes.
Thus, if we test d=0.1 with 7T=120, the rejection probabilities never exceed
0.400. If T'= 240, they do not exceed 0500 and even with 7= 360, the largest
probability is 0.640 corresponding to ¢=0.9 and s = 16. In general, we do not
observe large differences across ¢ and s, though, even in the case of correctly
assuming the type of I(0) disturbances underlying the process, the possibility of
long memory is still present in the context of Robinson’s (1994a) parametric tests.

<Table 4> displays the mean and variance of estimates of d based on the
Whittle method of Robinson (1995a) assuming that the true model is given by (7).
We see that if T=120, the estimated values of d are positive in all cases,
ranging between 0.100 (¢ = 0.7 and s = 4) and 0210 (¢ = 05 and s = 24).
Increasing 7, the values are smaller though still positive in most of the cases
with 7= 240. Thus, for example, if ¢ = 0.7 and s = 24, the estimated value of d
is 0.106. However, increasing the sample size to 360 observations, the values are
close to 0, sometimes positive, sometimes negative, ranging from -0.078 (¢ = 0.9
and s = 4) to 0.080 (¢ = 05, s = 24).

4. An empirical application

The time series data analysed in this section correspond to the number of
foreign visitors (NVISIT) and the number of occupations in hotels (NOCCUP) in
Spain, monthly, for the time period April 1965 - April 2002, obtained from the Bank
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of Spain database.

<Table 4> Mean and variance of the Whittle estimate (Robinson, 1995a)
in a model given by (7). (5,000 replications were used)

T=120 T= 240 7= 360

) S Mean Mean Mean | Variance| Mean | Variance
4 0.145 0.018 0.083 0.013 0.049 0.009
05 12 0.185 0.017 0.103 0.014 0.064 0.009
’ 16 0.194 0.016 0.110 0.013 0.065 0.011
24 0.210 0.017 0.123 0.013 0.080 0.012
4 0.100 0.019 0.032 0.011 0.001 0.010
07 12 0.165 0.017 0.072 0.014 0.028 0.007
) 16 0.180 0.017 0.085 0.014 0.039 0.008
24 0.203 0.017 0.106 0.011 0.057 0.008
4 0.135 0.021 -0.046 0.013 -0.078 0.011
0.9 12 0.141 0.019 0.030 0.017 -0.022 0.012
) 16 0.166 0.018 0.053 0.014 -0.002 0.009
24 0.195 0.018 0.085 0.014 0.025 0.010

<Figure 1> displays plots of the original series along with their corresponding
correlograms and periodograms. We see that both series are nonstationary with a
clear changing seasonal pattern. The correlograms explicitly show the seasonal
structure and the periodograms show peaks, not only at zero but also at the
seasonal frequencies. Similar plots based on the first differenced data are given in
<Figure 2>. The correlograms and the periodograms of the differenced data show
that the seasonal components are still present.

Denoting any of the series by =z,, the first thing we do is to perform the
parametric procedure of Robinson (1994a), testing the null hypothesis given by (3)
in model (1) using & given by (4). We take values d, from 0 to 2, with
increments of 0.25, and perform the tests assuming that u, is white noise, AR(1)
and seasonal AR(1). The results are displayed in <Table 5>. The last column of
the table reports the confidence intervals of those values of d, where H, (3)
cannot be rejected at the 95% significance level. Starting with the case of white
noise wu,, (in Table 5(i)), we observe that the unit root null hypothesis is rejected
in both series. In fact, the only non-rejection value of d, takes place at d=1.25
for the NVISIT series and at d=1.75 for the NOCCUP. Thus, we observe a
higher order of integration in the number of occupations compared with the
number of visitors. In fact, the confidence intervals are respectively [1.39 - 1.75]
and [153-191]. In the light of the results reported in this table, we could
conclude that the first differenced series still present a component of long memory
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<Figure 1> Plots of the original time series with their corresponding
correlograms and periodograms
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<Figure 2> Plots of the first differenced data with their corresponding
correlograms and periodograms
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behavior. However, we have seen in the previous section that in the presence of
periodicities, the tests tend to favor long memory even if it is not present. In
<Tables 5 (ii) and (iii)>, we assume that u, is AR(l) and seasonal AR(1)
respectively. Imposing non-seasonal disturbances, H, (3) cannot be rejected with
dy = 075 for NVISIT and for d, = 1 for NOCCUP. Thus, the results are
completely different to those obtained with white noise disturbances, though still
the order of integration at NOCCUP is higher than the one corresponding to the
number of visitors. However, the results in section 3 and a visual inspection at
the correlograms and periodograms in <Figure 1> and <Figure 2> suggest that
the most reliable resuits should be those based on seasonal AR disturbances.
(Table 5(iii)). Here, the unit root null (ie, d = 1) cannot be rejected for any of
the series and the confidence intervals are [081 - 1.09] for the number of
visitors, and [0.95 -1.25] for the occupations. In this context of seasonal 7(0)
disturbances, the tests were again performed for values of d; with 0.01
increments, and the lowest statistics were obtained at d, = 0.94 in the case of
NVISIT and at d, = 1.08 for NOCCUP.

<Table 5> Testing H, (3) in (1) with the tests of Robinson (1994a)

i) with white noise disturbances

Series 0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00 |Conf. Interval

NVISIT |1017.18} 18885 | 91.79 | 5845 | 3228 | 11.15 | 051 360 | 1755 | [1.39 - 1.75]

NOCCUP| 753.73 | 141.29 | 8965 | 6519 | 4165 | 1977 | 442 | 0.13 | 738 |[153 - 1911

il) with AR(1) disturbances

Series 0.00 0.25 0.50 0.75 1.00 125 1.50 1.75 200 Conf. Interval

NVISIT | 144.16 | 18667 | 63.06 | 0.31 | 19.12 | 26.87 | 2091 | 17.19 | 1838 | [0.71 - 0.85]

NOCCUP| 242.63 | 264.71 | 127.62 | 2339 | 331 | 25.14 | 27.80 | 22.99 | 20.50 | [0.86 - 1.00}

iti) with seasonal AR(1) disturbances

Series 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 |Conf. Interval

NVISIT | 929.71 | 25634 | 53.09 | 7.80 | 0.62 | 13.04 | 3325 | 5420 | 72.24 | [0.81 - 1.09]

NOCCUP| 914.08 | 287.08 | 9397 | 2560 | 1.30 | 385 | 1871 | 37.05 | 5446 ([0.95 - 1.25]

In bold-italic, the non-rejection values of the null hypothesis at the 95%
significance level.
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<Figure 3> Whittle estimates of Robinson (1995a) for a range of values
of m=1,220

NOCCUP

220

The horizontal axe refers to the bandwidth parameter number m, while the

vertical one corresponds to the estimated values of d.

<Figure 4> Whittle estimates of Robinson (1995a) for a shorter range of
values of m

NOCCUP

The horizontal axe refers to the bandwidth parameter number m, while the

vertical one corresponds to the estimated values of d.

<Figure 3> displays the estimates of d based on the Whittle estimate of
Robinson (1995a), ie., d given by equation (6), for a range of values of the
bandwidth number m from 1 to 7/2. Since the time series are clearly
nonstationary, the analysis was carried out based on the first differenced data,
adding then 1 to the estimated values of d to obtain the proper orders of
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integration of the series. We see that the estimates are very similar in both series
and they behave erratically from -0.5 to 0.5. The most stable behavior seems to
be obtained when m is constrained between 5 and 30. <Figure 4> displays the
estimates for that range of values of m. We see that the estimated values of d
are in some cases slightly higher than 0 for NOCCUP and they are strictly below
0 for NVISIT, which is completely in line with the previous results based on the
parametric procedure of Robinson (1994a) with seasonal AR disturbances. We can
then conclude by saying that both series present some degree of long memory
behavior with.- d higher than 1 for the number of occupations and below 1 and
thus showing mean reversion for the number of visitors.

5. Concluding comments

In this article we have examined if the presence of periodicities In raw time
series may influence the estimation and testing of the fractional differencing
parameter. For this purpose we have used a parametric testing procedure and a
semiparametric estimation method proposed by Robinson (1994a, 1995a). Several
Monte Carlo experiments conducted across the paper show that the tests of
Robinson (1994a) tend to accept the null hypothesis of long memory (ie., d> 0) in
the context of periodicity if we misspecify the I(0) disturbance term. However,
even if we correctly assume the periodicity in the disturbances, the results show
that the tests still may have low power in finite samples. The Whittle method of
Robinson (1995a) also presents a bias in the estimation in favor of long memory if
T is small. However, if 7 is relatively large (e.g., 7= 360), the performance of
the procedure seems to be adequate. These two methods were then applied to the
monthly series of the number of visitors and number of occupations in hotels in
Spain for the time period 1965m4-2002m4. The results show that in spite of the
seasonality, long memory is present in both series, with the order of integration
slightly above 1 for the number of occupations and slightly smaller than 1 for the
number of visitors.
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