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Test and Estimation for Normal Mean Changel

Jaehee Kim2) and Jong Eun Ryu®

Abstract

We consider the problem of testing the existence of change in mean and
estimating the change-point when the data are from the normal distribution. A
change-point estimator using the likelihood ratio test statistic, Gombay and
Horvath (1990) test statistic, and nonparametric change-point estimator using
Carlstein (1988) empirical distribution are studied when there exists one
change-point in the mean. A power study is done to compare the change test
statistics. And a comparison study of change-point estimators for estimation
capability is done via simulations with S-plus software.

Keywords : Brownian bridge; change-point; likelihood; mean change.

1. Introduction

Recently there has been more interest in the statistical analysis of change-point
detection and estimation. It is mainly because change-point problems can be
occurred in many disciplines such as economics, finance, medicine, psychology,
geology, meteorology, environmental studies and-etc. and even in daily lives.

In almost all classic statistical inference is based upon the assumption that
there exists a fixed probabilistic mechanism of data generation. Unlike classic
statistical inference, the parametric change analysis of data about the complex
objects is considered. The existence of more than one data generation process is
the most important characteristic of complex system.

When the hypotheses of statistical homogeneity holds true, that is, there exists
only one mechanism of data generation, the law of large numbers are applied to
make an inference. However if there exists change in the data generation, the
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probabilistic law should be applied differently. In this case all data obtained should
be sorted in subsamples generated by different probabilistic mechanisms. After this
classification the correct inference can be made.

It is important to detect possible changes of data generation process and the
appropriate statistical analysis of such data must begin with testing and decisions
about possible change.

Changes happen in every field of the world. For example, the daily stock
market records show that the stock price fluctuates. There are some shifts of
mean price. One would want to find out the possible change and the change-point
day and investigate the reason.

The quality of the products is expected to remain stable. However, for some
reasons, the process might lose the control to produce the same quality. They
would want to know the change-point where the quality of the products
deterioration occurs.

We consider tests for the mean change and the change-point estimation in the
normal distribution.

2. Univariate Normal Model

Let X,,X,,--, X, be independent normal random variables with parameters

(111,6%), (19,07 ), (,,,0%), respectively.
2.1 Mean Change

The mean change problem was first examined by Page (1955). Later Chernoff
and Zacks (1964) studied the one change test with the Bayesian approach. Kander
and Zacks (1968) extended to the problem to the one parameter exponential family
of distributions. Bhattacharya and Johnson (1968) investigated a nonparametric
approach to the problem of testing for a shift in the level of a process occurring
at an unknown time point. Gardner (1969) considered the problem of detecting
AMOC(at most one change) and the likelihood ratio for the normal random
variables. Sen and Srivastava (1975) derived the test for change with the normal
random variables to consider the nonparametric test.

Hinkley (1970) made an inference about the change-point problem. He examined
the normal variables and derived the test and the asymptotic distributions of the
likelihood ratio test statistic for testing the hypotheses about the change-point.
Hawkins (1977) obtained the exact null and alternative distributions of likelihood
ratio test statistic for the normal distribution.
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Gombay and Horvath (1990) considered the maximum likelihood tests for change
in the mean of independent random variables and proved the limit distribution as a
double exponential distribution. James et al. (1987) considered testing a sequence
of independent normal random variables and suggested the test statistic based on
the likelihood ratio and the recursive residuals. Buckley (1991) suggested the
cusum type test for the normal random variables to detect a smooth change
signal.

The hypothesis of interest is defined as

Hy: gy = pg == p, = p Versus Hy:py == # ppy == 4, 2.1
where k is the unknown Ilocation of the single change-point. The testing

procedure depends on whether the nuisance parameter ¢° is known or unknown.

2.2 Test for Mean Change

When the variance is known, without loss of generality, assume that ¢° =1.

The maximum likelihood ratio procedure test statistic is
Ly(p)
= (2.2)
Ll (:u’lhu‘n)

where the MLE's are

- 1 n "N _ 1 k N _ 1 n
= = e . == 1:— . :X ‘= .
p=X=2 0K m=X=p K =KX= omp 3 X
and
1" 2

1 TR
L(](,u)z (\/2_)”6 s

™

k n

1 1 2
Ll(l'l‘lhun,):mxexp{_E[E(Xi_,u/l)2+ (Xi,“,u,,)”.

i=1 i=k+1
~2logA is considered. Therefore the likelihood procedure test statistic for testing
H, against H, is
Ul=max, <, Vi (2.3)
LRT((likelihood ratio test) rejects H, if U is large. Hawkins (1977) derived the
exact and asymptotic null distribution of the test U= U,z
Let

k _ n _
S = Z(Xi—Xk)2+ 2 (Xi”Xn—k)Qn

i=1 i=k+1

V= k(X,— X+ (n— k)X, _,— X)? (2.4)

n—k
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and §= Y,(X;— X)*. Then V,= §— S,

i=1

Simple algebra leads an alternative expression for V) as

. 2 .

Vv, = Hn”_—k—)— [;(Xi - ?()2] . (2.5)
Therefore

U=max, 2 ;< ,+/ Vi = max, 2 ;< | T} (2.6)
where

k
T, = 75(nnTk)‘ [,;(X” — 7()2} . @7
iln—j

Note that Ty, Ty,-,T,-; is a Markov process with Cov(T;, T}) = =)
for ¢ <j and the partial covariance between 7, and 7; when 7,, is fixed equals
0. Hawkins (1977) derived the exact null distribution of U as

n—1

fole)=28(2,0,1) Y g, (z,2)g, _ i (z,x)

k=1
where &(z,0,1) is the pdf of ~N(0,1), g,(z,s)=1 for z,s = 0, and
gi(z,s)=PT)<s,i=1,2,--,k—1| |T)=2, for z,5>=0.
The asymptotic null distribution is based on the followings:
Let W,=X;+X,+-+ X;,1 < k< n. Then simple algebra leads to

=

Let {B(t);0 < t< o} is a standard Brownian motion. Then under H#,,

U= max; <r<n

wW.—k
['—L—-\/ﬁﬁ;l <k< n}=d{B(k/n);1 <k< n}
where =9 means "distributed as”. Further
W, k W,k k\1V/?
U=max; <<, W‘ ;-\/—_—;/[7{(1—;)]
W, W,
=maX; < r<n 7—$——t—7 /[t(l—t)]1/2

=Mmax,, _ .. .| BEt)—tBL)/[t(1—t)]*?
where t=k/n,B,= B(t)—tB(1) is the Brownian bridge. By the properties of
Brownian motion and convergence rules from the probability theory, the
asymptotic distribution of U is proved to be a Gumbel distribution by Yao and
Davis (1986). The following theorem shows the limiting distribution of U based
on the properties of Brownian motion.
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Theorem 2.1 Under H,, that is, with no change, for — o < z < o,
lim Pla, "(U-b,) < z]= exp— 27rel/2e—’”,

where a,= (2log(logn))™ 2, b,=a;'+ —;—anlog(log(logn)) )

proof. From Chen and Gupta (2000), under H,
Pla, " (U-b,) <z]=PlU< a,3+b,]

= P|max n |B(0) < a,x+b,
1< nt< [Iogn] N
* Plmax n_11B(t)~ BQ) +o,(a,)
( 15"(1—1)<[E}———— ,Ttt—ﬁ a,x+b,
—>exp(— Te I/Ze_z) . exp(— - 1/26—2) — exp(~ ome” 1/26—$)

as n—oo and by Darling and Erdos (1956) convergence properties for the
Brownian motion. The limiting distribution is shown as a Gumbel distribution.

When the variance is unknown, the likelihood based test statistic is then given
by
| T

V=max; <1<, S

where §= ¥,(X;— X)? and 7, in (27). Worsley (1979) obtained the null

i=1
distribution of V using Bonferroni approximation. The likelihood test rejects H, if
V>e.

2.3 Change-point Estimation for Mean Change based on the Likelihood

Based on the likelilhood with the known variance, the change-point can be
estimated as
k= argmaz, < <, T}l (2.8)
where 7, is in (2.7).
When the variance is unknown,

~ | T3
k= argmaz, ., < N (2.9)

is equivalently k= argmaz, - <. T} .

Chen and Gupta (2000) showed the distribution of the location of the
change-point.

2.4 Attempted Change-point Estimation for Mean Change
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Gombay and Horvath (1990) test is developed as the function of mle’s. They
consider the test statistic based on
Z, =2kg(X )+ (n—k)g(X, _ D—ng(X,) (2.10)
where g is a given function. For the hypotheses (2.1), their test rejects H, in
favor of H; for large values of
20.7) L
i,J) = max; ., <jm

is the second derivative of g and for suitably chosen ¢ and j.

(2.11)

where g(z)

Note that the maximum occurs at the change-point when there is a
change-point. Therefore we attempt change-point estimation based on Gombay
and Horvath (1990) test which has a functional form of the maximum likelihood
as follows:

ko = argmaz, < < ;< 1 2(i,5) (2.12)

where g,(t) =1, g,(t) =exp(t) chosen for g(+) in (2.10).
Gombay and Horvath (1990) showed that the limiting distribution of their test is
Z(my,my)/o*—supy < , < 41 V(s)P

in distribution, where 0 < A; € 1— X, <1 as n—,
1

and {V(s),— o <s<oo} is an Omnstein-Uhlenbeck process, ie. a Gaussian
process with mean zero and covariance exp{(— |t —s|). Therefore the distribution of
the change—point is shown as

argmaz Z(my,m,)/a’ —>oo {klV, = supy < , < 4| V(s)} as n—ooo,

3. Simulation

A simulation study is conducted to see the power of the tests according to the
sample size, the amount of change, and the location of change. The parametric
test is compared with the Gombay and Horvath (1990) test as the function of
mle's.

For the change tests, the LRT based test and the Gomabay and Horvath (1990)
test with g, (t) =2, g,(t) = exp(t) are compared in the simulation study.

ni

Carlstein (1988) considered the pre-t empirical cdf ,h(z)= Y 7{X; < z}/nt and

i=1
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n

post-t empirical cdfh,(z)= Y, I{X;<z}/n(1—t) for tE€T,={i/n:1<i

i=nt+1
<n-—1}, with the indicator function, /(X < a)=1,if x < a, if0, z > a. Carlstein
(1988) proposed the change-point estimators as for j=1,2,3
T'carlj = argmar; < < n{DJ(t)}
where D, (t)=t""(1—¢)"n! E Lh(z;)—h,(z;)l,

i=1

D,(t) = tm(l—t)m[n_li(th(m)—hi(x,-))Q

i=1

1/2

Dy(t) = 21— t)Y2sup, < ; < ,);h(z;) = b ().
A random sample X;,X,,---,X, are generated from the normal distribution with

mean 0 and variance o’ =1. The mean level change model with one change
-point is as follows:
+e€;, i=1,,k

Xi:{Z-PAI-Fei,z’::I,---:n 3.1
where pu=0 without loss of generality., The amount of change
A=-1.5,—0.5,0,0.5,1,1.5, the sample size n=50 and the location of change at
k/n=0.3,0.5,0.8 are considered. The repetition r=1,000 were used in this
simulation. The range of the points is restricted from 5th to 45th point due to
boundary consideration.

For the power study, a=0.05,0.10 level empirical critical values were
evaluated from the empirical distribution with 10,000 repetitions. <Table 3.1>
gives the simulation results of the empirical powers for testing for the existing
change. Power of LRT is the most since the correct distribution was incorporated
in the test statistic. In comparison, Hawkins (1977) test is

k
Thpar = MaX; < p <y k_(ﬁ[l—T){IZEI(X; - /_Y)Q}, (3.2)
and James et al.(1987) test considered as the square root of the log likelihood ratio
test statistics is

k
’kX— pIR¢
Ty=max; <1< n L lk (3.3)
kl1——
n

The power of tests depends on the location of the change-point. Upgpr does not
depend on the type of change: decreasing or increasing. When the amount of
change is A =0.5,1,1.5, the power of Ty is best but it depends on the
type of level change.
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For the comparison of change-point estimators, mean and mse(mean squared
error) of each estimator were calculated. Also  propl =P(|l§— k< 1),
prop2 = P(lk—kl< 2) and props= P(lk—kl< 5) are calculated to know the local
behavior of the change-point estimators. <Table 3.2>, <Table 3.3> and <Table
3.4> show the result.

<Table 3.1> Power comparison study of Change-point tests in Normal
distribution with the sample size n =50, the change-point
k=15,25,40 in 1,000 repetitions at a = 0.05

change-point k=15 k=25 k=40
=0.10 a=0.05 a=0.10 a=0.05 =0.10 a=0.05
Upr 0.995 0.986 0.999 0.995 0.968 0.945
Thowr 0.963 0.963 0.984 0.950 0.924 0.859
A=-15 7, 0.809 0.687 0.902 0.813 0.782 0.668
Tem 0.995 0.986 0.999 0.995 0.968 0.945
Tom 0.755 0.567 0.910 0.803 0.794 0.586
Urr 0.857 0.760 0.878 0.819 0.702 0.587
ook 0.637 0.637 0.684 0.537 0.550 0.393
A=-1 7, 0.546 0.424 0.637 0.533 0.490 0.361
Tom 0.857 0.760 0.878 0.819 0.702 0.587
Tom 0.453 0.282 0.584 0.419 0.385 0.204
Upr 0.316 0.212 0.368 0.246 0.244 0.151
Tiuwor 0.133 0.079 0.143 0.067 0.121 0.059
A=-05 Vi 0.216 0.140 0.284 0.182 0.207 0.126
Tom 0.316 0.212 0.368 0.246 0.244 0.151
Tom 0.150 0.079 0.174 0.088 0.111 0.048
Upr 0.313 0.205 0.374 0.257 0.246 0.163
) 0.139 0.073 0.169 0.169 0.129 0.072

A=05 T, 0.217 0.126 0.290 0.180 0.238 0.152
T 0.313 0.205 0.374 0.257 0.246 0.163
Tom 0.409 0.264 0.466 0.317 0.304 0.188
Unr 0.836 0.755 0.903 0.845 0.733 0.620
Tt 0.646 0.490 0.717 0.556 0572 0.424
A=1 T, 0518 0410 0671 0.566 0512 0.417
Tom 0.836 0.755 0.903 0.845 0.733 0.620
T 0.946 0.904 0.958 0.922 0.820 0.731
Upr 0.997 0.988 0.999 0.997 0.972 0.957
Tyonk 0972 0927 0.986 0.966 0.935 0.861
A=15 T, 0.813 0.707 0.892 0.788 0.757 0.649
Tem 0.997 0.988 0.999 0.997 0972 0.957

T 1.000 1.000 1.000 1.000 0.988 0.973
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<Table 3.2> Comparison of change-point estimators with n=50 and k=15

change-point k=15

mean mse propl prop2 prop5 95% CI

k. | 20881 | 170291 | 0.190 0.275 0433 (8,41)

o 20844 | 214040 | 0145 0215 0.362 (6,43)

ko, 10407 | 120851 | 0073 0.133 0.275 (523)

kp, 20.881 | 171.291 | 0.190 0.275 0.433 (841)

A=05 - '

ky, 22490 | 200930 | 0.176 0.261 0.411 (942)

kp ., 17.737 | 172601 | 0.165 0227 0.374 (5,43)

ko, 18208 | 176280 | 0.168 0.228 0.379 (5,43)

ko, 22229 | 284639 | 0088 0.135 0.264 (5,45)

ko | 16263 | 45089 | 0446 0.589 0777 | 1023)

ko, 15473 | 69.251 0.391 0.517 0.693 (7,24)

ko, 8506 | 67789 | 0111 0.173 0.361 (5,14)

- ko, 16263 | 45089 | 0446 0.589 0777 | (10,23)
) kr., 18416 | 75750 | 0424 0.554 073 | (1230
ko 13810 | 41296 | 0385 0523 0.688 (6,19)

kp, | 14161 | 41677 | 0389 0.526 0.699 (6,20)

ko, 15937 | 113309 | 0225 0.311 0.479 (533)

ky. | 16350 | 10182 | 0692 0.810 0932 | (1318

kg 14528 | 18038 | 0643 0.755 0.891 (1017)

kg, 8568 | 55652 | 0104 0.169 0.362 (5,14)

ky, 15350 | 10182 | 0692 0.810 0932 | (13,18)

A=15 -

ko 17065 | 31817 | 0643 0.751 0.871 (14,22)

ky 14270 | 10632 0.650 0.761 0894 | (1017

ko 14575 | 11213 | 0655 0.773 0900 | (11,17

ky 14912 | 68592 | 0378 0.465 0.614 (5,24)
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<Table 3.3> Comparison of change-point estimators with n =50 and k=25

change-point k=25

mean mse propl prop2 propd 95% CI

i, | 25049 | 110267 | 0205 0.286 0467 | (1041)

ky I 25379 | 163837 | 0146 0198 | 0342 (7.44)

kg, 13263 | 254.283 | 0.062 0.085 0.168 (527

k., 25049 | 110267 | 0205 0.286 0467 | (1041)

A=05 -

e 26878 | 116624 | 0.193 0.273 0458 | (1143)

kg, 21149 | 170115 | 0156 0.214 0.342 (5.42)

kr, | 21320 | 165514 | 0.5 0213 0.347 (542)

kp, | 24151 | 216815 | 0.100 0.141 0.239 (545)

ky, | 24809 | 32519 | 0510 0.632 0811 | (20,30)

kr,, | 25304 | 68080 | 0427 0.531 0690 | (1538)

ko 13718 | 175404 | 0071 0.106 0.232 (5.23)

ko, 24899 | 32579 | 0510 0.632 0811 | (20,30

o kr, 27003 | 42747 | 0474 0.593 0762 | (223D
ky, 22332 | 60486 | 0447 0.558 0722 | (1028)

kp, | 22709 | 56917 | 0446 0.562 0725 | (1128)

kp, | 21585 | 133467 | 0.242 0.331 0.498 (536)

ky,. | 25021 | 9497 0.685 0.802 0933 | (2328)

ky. | 25040 | 20742 | 0630 0.739 0878 | (2228)

kg, 13800 | 164926 | 0076 0.109 0.220 (6,23)

Ky, 25021 | 9497 0.685 0.802 0933 | (2328)

4-15 "

Ky, 26504 | 18198 | 0619 0.733 0872 | (243D

ky, 24101 | 17705 | 0.659 0.768 0901 | (1,27

ko, | 24307 | 16035 | 0659 0.769 0902 | (@127

ko | 22100 | 97023 | 0.400 0.499 0635 | (531
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<Table 3.4> Comparison of change-point estimators with n=>50 and k=40

change—point k=40
mean mse propl prop2 propd 95% CI
ke, |3003L | 270797 | 0191 0298 | 0525 | (844)
kg, | 30414 | 303118 | 0184 0.282 0573 | (645
ko, 16404 | 763400 | 0045 0.069 0139 | (539
kg, | 30031 | 271797 | 0.91 0298 | 0525 | (844)
405
rw | 31393 | 241565 | 0.203 0.322 0576 | (944)
kpn, | 24707 | 454481 | 0116 | 0183 0376 | (544)
kr, | 24962 | 442028 | 0113 0.179 0379 | (544
kn, | 23621 | 512277 | 0068 | 0118 | 0350 | (545)
Ky, | 36537 | 91065 | 0483 0.614 0810 | (2443)
k. | 3782 | 9294 | 0474 0.600 0872 | (27.44)
ko, 21.239 | 520055 | 0086 0.120 0208 | (539
- kr, | 36337 | 91065 | 0483 0.614 0810 | (2443)
kr, | 38494 | 55626 | 0523 0.660 0894 | (3444)
kr, | 31351 | 247787 | 0381 0488 | 0650 | (642
k., | 31870 | 230618 | 0393 | 0497 0663 | (7,42)
kp., | 2393 | 513727 | 0.193 0.256 0414 | (543)
Ry, | 39249 | 15467 | 0697 0.817 0949 | (37,42)
kp.. | 40178 | 17252 | 0.662 0.775 0974 | (39.43)
kg 23671 | 392269 | 0077 0.118 0220 | (7.38)
kr, | 39249 | 15467 | 0697 0.817 0949 | (37.42)
A=15 -
kr, | 40343 | 6923 | 0691 0.802 0984 | (3943)
kn, | 36646 | 8048 | 0619 | 0724 | 08% | (2841)
kg, | 86963 | 76933 | o621 0.728 0863 | (3041)
kp, | 21592 | 415272 | 0372 0.450 0575 | (542
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<Table 3.1> shows that the power of LRT is the best when the change-point
occurs in the middle. Also there is the same trend for the power of Gombay and
Horvath test. But the power of Hawkins test is best when the change-point
occurs in the early part of data with decreasing change. Therefore the location of
the change-point affects the power of each test.

Overall the change-point estimation with LRT is better since the parametric

distributional assumption holds. In the Carlstein nonparametric estimation, k Toims 1S

better in the sense of mse. When the change occurs in the middle of the data, the
change-point estimators are better since it can have more balanced information in
the estimation procedure. <Table 3.4> gives the change-point estimation results
that the applied estimator of Gombay and Horvath type works better than the
estimator with the likelihood when the change-point occurs in the later part of
data. The estimation ability also depends on the location of the change-point. We
found that the function of the MLE’s can work as test statistics and change-point
estimators.

4. Concluding Remark

Considered are the problems of testing change and estimating for the mean
change-point when the data are from the normal distribution. Overall the
change-point estimation with LRT is better since the parametric distributional
assumption holds. Gombay and Horvath (1990) tests have good power as a
function derived from the likelihood. Also we tried the change-point estimation
based on Gombay and Horvath (1990) test statistic. Via simulation this attempted
estimator has a good performance as a change-point estimator. This functional
form is expected to be used for other distributions in change analysis.
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