The Korean Communications in Statistics
Vol. 13 No. 3, 2006, pp.621-633

Bayesian Multiple Change-point Estimation in Normal
with EMCD
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Abstract

In this paper, we estimate multiple change-points when the data follow the normal
distributions in the Bayesian way. Evolutionary Monte Carlo (EMC) algorithm is applied
into general Bayesian model with variable-dimension parameters and shows its usefulness
and efficiency as a promising tool especially for computational issues. The method is applied
to the humidity data of Seoul and the final model is determined based on BIC.

1. Introduction

The problem to identify the change-points is of increasing interest in various
fields since the change-points should be detected and the further process should
be applied. Also finding the number of change-points is another big issue as a
multiple change-point problem. This is one of the challenging statistical problems
where the dimension of the object of inference is not fixed.

Recently there has been a more interest in the statistical analysis of
change-point detection and estimation. It is mainly because change-point problems
can be occurred in many disciplines such as economics, finance, medicine,
psychology, geology, meteorology, environmental studies and etc. and even in daily
lives.

In almost all classic statistical inference is based upon the assumption that
there exists a fixed probabilistic mechanism of data generation. Unlike classic
statistical inference, the Bayesian change analysis has interesting aspect to
incorporate the previous information reflected with the appropriate priors. The
existence of more than one data generation process is the most important
characteristic of complex system.
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When the hypotheses of statistical homogeneity hold true, that is, there exists
only one mechanism of data generation, the law of large numbers are applied to
make an inference. However if there exists change in the data generation, the
probabilistic law should be applied to differently. In this case all data obtained
should be sorted in subsamples generated by different probabilistic mechanisms.
After this classification the correct inferences can be made.

It is important to detect possible changes of data generation process and the
appropriate statistical analysis of such data must begin with testing and decisions
about possible change. Chen and Gupta (2000) dealt with the parametric
change-point problem in several distributions.

As a Bayesian change-point approach Chernoff and Zacks (1964) considered a
Markov model for the normal observations. Yao (1984) gave the same probability
model to a change in a Markov model and a product partition model using an
approximation for the posterior means. Barry and Hartigan (1993) modeled the
process by supposing that there is an underlying sequence of parameters
partitioned into contiguous blocks of equal parameter values and the beginning of
each block is said to be a change-point. In their product partition models, the
probability of any partition is proportional to a product of prior cohesions and
given the blocks the parameters in different blocks have independent prior
distribution. For their Bayesian approach, the Markov sampling technique is used
to calculation the posterior probabilities. With more possible partitions, the model
space becomes complex with multiple modes, For the computational algorithm of
posterior probabilities of this complicated form, recent computational methods are
developed and those can improve the calculation of the posterior probabilities.

Green (1995) proposed a new framework for the construction of reversible
Markov chain samplers that jump between parameter subspaces of differing
dimensionality. Its flexibility has wide applicability including multiple change-point
problems. Liang and Wong (1999) applied Evolutionary Monte Carlo (EMC)
algorithm which has active features of genetic algorithm (Holland (1975)) in the
framework of Markov Chain Monte Carlo (MCMC) to the normal change-point
problem.

In this paper, the multiple change-point problems are dealt when the
observations are from the parametric distributions. A latent vector is introduced to
partition the observations and indicate the change-point positions, and the other
parameters are integrated out with an appropriate choice of prior distributions as a
Bayesian approach. Especially the EMC algorithm is applied to find the multiple
change-points when the number of change-points is unknown. The numerical
results including applied to real data show that EMC is a promising approach for
both simulation and optimization.
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This paper is organized as follows. In section 2 a multiple change-point model
is defined with prior distributions for the parameters. Section 3 describes an
algorithm-evolutionary Monte Carlo (EMC) and its usefulness as a Monte Carlo
sampler. Section 4 presents some numerical results including simulation and real
data analysis. Finally section 5 concludes the paper with a discussion of
change—point problem and EMC algorithm.

2. Multiple Change-point Model with Normal Errors

A sequence of observations undergoes sudden changes at unknown time points.
We can model the process by supposing that there is an underlying sequence of
parameters partitioned into contiguous blocks of equal parameter values and the
beginning of each block is said to be a change-point. Observations are then
assumed to be independent in different blocks given the sequence of parameters.

Let Z= (2,25, ,2,) denote the independent observation sequence ordered in
time. There exists a partition on the set 1,2,,n into blocks such that the
sequence follows the same distribution within blocks. That is, the change-points
divide the partitions. Introduce a binary vector z=(z,,25,",2,) With

T, =%, ==z, =1 and being 0 elsewhere and 0=c,=<¢ <= <cppy=n.

There are k change-points in the model and k& is unknown. The multiple
change-point model can be written as follows:
zl""f,.( . 107‘)7 c,._l <i<cr (2.1)

for r=1,2,-+,k+1 and f, depends on the parameters 8.€@©. The parameters
change at ¢, +1,¢,+1,,¢,+1. Each ¢;,¢y,¢;, are called the change-point.

The observations are assumed to be independently drawn from a Normal
distribution N(u,0?) with unknown p and o°. After the change-point, the normal
distribution may shift in both mean and variance.

In a Bayesian analysis, it is necessary to give probability distributions to both
the change-points and the parameters. An important practical consideration is that
some prior constraint is necessary on the number of change-points and on the
amount of variability between blocks. These are parameters about which the data
cannot be relied on to be conclusive. The prior distributions are given as follows.

Consider f, is a normal density parameterized by 6, = (u,,02). Let z® denote
a configuration of z with k change-points. Let "= (z®), PisOh s ks, 004,) and
A, be the space of models with k change—points, w(k)EAkand X= Uj=4s.

The likelihood function of Z is
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L(Z_]W(k)) = H;l= q.+1f1 (zj|ﬂ1’<7%) H;L;lck«#lfl (zj|ﬂk+1aai+1)~

Therefore the log-likelihood function of model n(k)is
) ‘K e—eimy 2 1 & 9
logZ(ZIn'" ) =— E —T—loga;+5—2‘ Z (z;— ) (2.2
i=1 O j=c¢ 1
For a Bayesian analysis, consider the prior distribution for n(’“) as
Wy N (n=1-k)
n—1 /\j ('I’L— 1)! !
i=0 J!

This prior gives that 4, has a truncated up to (n—1) Poisson distribution

k=0,1,,n—1

with parameter A and each models in A, is equally likely. Put an improper prior

on p's and an inverse-gamma IG(v,8) on o®’s and the priors are independent.
Then the log-prior density is

i=1 ;

ket 1 5
logn (n*) = a,, — Y {('y* 1)logo: + —2} (2.3)

where a;, = (k+1)(ylogd — logI'(y)) + log(n— 1 — k)! + klogh. Here ~,6 and A are
fixed hyperparameters. The log posterior of n(k) (up to an additive constant) can
be obtained by adding (2.2) and (2.3). Integrating out p,,0%,*, ., ,,0.,, from the

full posterior distribution and taking a logarithm, we obtain
k+1

2
(s c—¢i—1—1
- E {%log(ci —ci_y)— logF(————2L——+ ’y)

i=1
c; JQ
Z
¢ Z J
1 - 9 [7‘=c,._,+1

Ci_ci—l_l )
+( 5 + v|log 5-1—2 E z; 2(01"‘01‘—1)

j=e¢ o +1

logn (¥ z)= a;, + log2m

We can sample from this marginal posterior 7(z"*)|Z) by EMC technique and
estimate the change-points which have greatest posterior probabilities. In addition
to identifying the change-points, we can estimate the probabilities p(A4,/Z) for
kpyin < k< k and k

change—-points of interest from Liang and Liu (2005).
In a typical application with multiple parameter subspaces of different

where k specify the range of the number of

max m i max

dimensionality, it will be necessary to devise different types of move between the
subspaces. Tierney (1994) calls a hybrid sampler, by random choice between
available moves at each transition, in order to traverse freely across the combined
parameter space. As usual with Hastings algorithms, the probability of acceptance
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is left undefined in this situation. Green (1995) derives an expression of the
probability of acceptance which achieves the stated aim of attaining detailed
balance within each move type and proposes the reversible jump Markov chain
Monte Carlo (RJMCMC). Green (1995) applies RJMCMC to the multiple
change-point problem considering the variability of the number of change-points.
In this paper, we would like to use the EMC algorithm as a computational tool. In
next section, the EMC algorithm is briefly reviewed.

3. Evolutionary Monte Carlo Algorithm

Suppose that we are working with the following Boltzmann distribution,

p(a) = Zexp(- Ha)/r),  wEx, GD)

where Z is the normalizing constant, 7= (r,,-+,7y) is the temperature, and x is a
sample space. Without loss of generality, we assume that x is compact. In
Bayesian statistics, z = (z,,",2,) is often a vector of parameters while the fitness
function H{(z) is the negative of the log—posterior of z. This paper is focused on
H(z). In EMC, a different temperature 7, is attached to each individualz;, and the
temperatures form a ladder with the ordering = >+ > 7y. EMC has many
attractive features of simulated annealing and genetic algorithm into a framework
of MCMC. It works well with simulating a population of Markov Chains in
parallel where a different temperature is attached to each chain. The population is
updated by mutation (Metropolis update in one single chain), crossover (partial
states swapping between different chains), and exchange operators (full state
swapping between different chains). Thus, EMC is the useful Monte Carlo
sampler. Refer to Liang (2000) for more details on these operators. Based on these
operators, EMC is summarized as follows.

Given an initial population z={z,,-,zy}. and a temperature ladder
7= {r,~, 7y}, one iteration of the Markov chain consists of two steps.

1. Apply the mutation or the crossover operator to the population with
probabilities ¢, and 1—g,,, respectively (g,, is the mutation rate).

2. Try to exchange z; with z; for N pairs (i,j) with ¢ being sampled
uniformly on {1,-N} and j£1 with probability w(z,z,;), where
wlz,, Jz;)=wlz,_lz;) =0.5 and w(z,lz;)=wlxy_lzy)=1.

In the mutation operation, each point of the population 1s mutated
independently. In the crossover operation, about 40% of points are chosen to mate.
Note that the parental points are chosen in an iterative way, i.e., each time two
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parental points are chosen from the current population which has been updated by
the last crossover operation. This operation repeats for [/V/5] (the integer part of
N/5) times. The algorithm has three free parameters, namely N, 7 and g,. The

mutation rate g, can be chosen to achieve a trade-off between the exploration and
convergence of the algorithm (Spears (1992)) ie, ¢, is usually set to a large

value for a small population to provide the system more opportunities to explore
the sample space, and a small value for a large population to force the system to
converge quickly, respectively. For example, we fixed ¢, = 0.2 in all simulations of

this paper. The temperature ladder r can be set such that

Var(H(x,;))8? = 0(1) (3.2)
where d=1/7.,,— 1/, ie., this condition on § is also equivalent to requiring that
the distributions on temperature level 7, and 7,,; have a considerable overlap.

Refer to simulated tempering (Marinari and Parisi (1992)) and parallel tempering
(Geyer (1991), Hukushima and Nemoto (1996)).

4, Numerical Examples

4.1. Change-point Estimation with the Simulated Normal Data

In this simulation, we generated 200 independent observations z;,',z5; from
N(—=0.5,1.5), 257,725 from  N(0.25,0.75), 257,274 from  N(—0.1,0.16),
Zyg, i zige from N(0.5,1.5), 2ygp,y21g from  N{—0.25,0.75);2,3;,",2179 from
N(0.1,0.16), 27,1299 from N(—0.01,0.5).

There are 6 change-points in the observation sequence. The time plot is shown
in <Figure 1>.

observation
4
!

<Figure 1> A Time Series Plot of the Observation Data
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We assume that there are no more than 99 change-points in the observation
sequence, and the change-points only occur after even observations, ie., d=99,
and ¢;£{2,4,-,198}. In the simulation, we set A=6, y=0.05 and §=0.05, which

corresponds to a vague prior on a,-_z. The population size was 20 and the
temperature levels were equally spaced between 10 and 1. A three-point mutation
and an adaptive crossover were used with p,, =0.2, p,=0.01, p, =0.02 and
P, =0.04, EMC was run for 7000 iterations (the first 1000 iterations were

discarded for the burn-in process). The overall acceptance probabilities of
mutations, crossover and exchange operations were 058, 0.18 and 0.70,
respectively. <Table 1> lists the 10 models with the largest log-posterior values
found using EMC sampler. Note that the true change-point model was ranked as
1 in log-posterior values among all sampled models. Other results of the run are
shown in <Figure 2>.

<Figure 2(b)> shows that the Maximum posterior model was sampled. In
addition, many models with close log-posterior were sampled. <Figure 2(a)> is
the histogram of the posterior of the identified change-point positions. It shows
that most of the models with high posterior probabilities include 6 change-points.
This figure shows that the six most likely change points are around 26, 56, 76,
100, 130 and 170. Note that there is much uncertainty around the fourth cluster of
the histogram bars in <Figure 2(a)>. This is consistent with the results shown in
<Table 1>: the models with the first three change points at 26, 56 and 76, and
the third change point being around 98 (92 - 100) have very close log-posterior
values. <Figure 2(c)> shows the Maximum posteriori estimate of the change
patterns of the data. The maximum posteriori estimate of the change points is (26,
56, 76, 100, 130, 170), which is exactly the same with the true model. This result
is strongly supported by the data. The EMC simulation seems to work well in
identifying some plausible models with multiple change-points according to the
posterior likelihood.

<Table 1> The 10 models with the largest log-posterior values sampled by
EMC. The wunderlined model is true and is ranked 1 in
log-posterior values among all models sampled by EMC. The
second column shows the differences of the log-posterior values
of the models from the true model.

. Number of
= *
No | Log-posterior change-points Change patterns
1 0.0000 6 (26, 56, 76, 100, 130, 170)
2 -0.2003 7 (26, 56, 76, 94, 100, 130, 170)
3 -0.6526 5 (26, 56, 76, 130, 170)
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<Table 1> Continued

4 -0.9902 7 (26, 56, 76, 100, 130, 170, 174)

5 -1.1797 8 (26, 56, 76, 94, 100, 130, 170, 174)
6 -1.8435 7 (26, 56, 76, 78, 100, 130, 170)

7 -1.9585 6 (26, 56, 76, 102, 130, 170)

8 -2.0017 6 (26, 56, 76, 98, 130, 170)

9 -2.2120 7 (26, 56, 76, 92, 100, 130, 170)

10 -2.6722 8 (26, 56, 76, 94, 100, 130, 170, 176)
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<Figure 2> The simulation resuits of EMC for the change-point example:
(a) The posterior histogram of change-point positions sampled by
EMC; (b) The scatter plot of the negative log-posterior values
among all models sampled by EMC vs the number of
change-points (¢) A comparison of the Maximum posteriori
estimate of the change-point positions and the true change-point
positions (the vertical (dotted) lines indicated the change-point
positions identified by the Maximum posteriori model, the
horizontal (dashed) lines indicate the mean value of observations
separated by change-point positions of the true model).
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4.2. Change-point Estimation with Humidity Data of Seoul in 1999

Meteorological data and air pollutants were measured hourly from January 1,
1999 to December 31, 1999 at 27 sites monitored by Korean Ministry of
Environment. The hourly 24 averages on 27 sites in Seoul were computed.
Meteorological data including temperature, precipitation, relative humidity, wind
speed, and wind direction were obtained from Korea Meteorological Administration.

We would like to estimate the several change-points of humidity in a year to
see the change trend in Seoul. Bayesian models express appropriate uncertainty
about the change-points and give a plausible description about the observations.
The time plot is shown in <Figure 3>. Since each observation is an averaged
value, it can be assumed to follow the normal distribution by the central limit
theorem. Here we didn't consider the dependency as a time series. Considering
time series change-point model is left as the next research.

100
i

observation
80
1

T T T T
0 100 200 300
tim e

<Figure 3> A Time Series Plot of the Humidity in 1999.

For a Bayesian analysis, the hyperparameters should be decided from the
previous information. We assume that there are no more than 181 change-points
in the observation sequence, and the change-points only occur after even
observations, ie, d=181, and c¢,€{2,4,~-,362}. In the simulation, we used the
exactly same setting as that used for above Normal data, except that we set
A=3, v=1 and 6=0.003 which corresponds to a vague prior on o, 2 The
overall acceptance probabilities of mutations, crossover and exchange operations
were 0.41, 0.05 and 0.57, respectively. Table 2 lists the 10 models with the largest
log-posterior values found by EMC. Other results of the run are shown in
<Figure 4>.

Many models were sampled for which the log—posterior values were very close.
<Figure 4(a)> is the posterior histogram of the identified change-point positions.
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It shows that most of the models with high posterior probabilities include three
change-points. This figure shows that the three most likely change points are
around 120, 196 and 286. Note that there is much uncertainty around all clusters
of the histogram bars in <Figure 4(a)>. We used Bayesian Information Criterion
(BIC), a popular criterion for model selection. <Table 2> indicates that the models
with the first one change point being around 120 (114-126), the second
change-point being around 200 (194-210) and the third change-point being around
300 (284 -310) have very close log-posterior values. <Figure 4(c)> shows the
Minimum BIC estimate of the change pattems of the data. The Minimum BIC
estimate of the change points is (126, 196, 286); ie., (May 06, Jul. 15 Oct. 13).
Our analysis supports changes in humidity at the start of May, mid July, mid
October which reflect the trend of humidity in Seoul, Korea. Considering the
climate in Korea, July and August in the summer season have higher temperature
and humidity than other days in a year. And in the winter and early spring, the
humidity is lower than the summer season.

<Table 2> The 10 models with the largest log-posterior values sampled by
EMC. The second column shows BIC (Bayesian Information
criterion) values for model selection. The fifth column indicates
the log-posterior values of the posteriori models. ‘

No BIC* # change-points Change patterns Log-posterior*
1 | 502.5761 3 126(5/06), 198(7/17), 286(10/13) -336.2414
2 | 502.5764 3 124(5/04), 198(7/17), 286(10/13) -336.5378
3 | 502.6183 3 116(4/26), 196(7/15), 286(10/13) -333.1895
4 | 502.6188 3 114(4/24), 196(7/15), 286(10/13) -334.7499
5 | 512.9199 3 126(5/06), 198(7/17), 284(10/11) -336.9836
6 | 512.9202 3 124(5/04), 198(7/17), 284(10/11) -337.2800
7 | 512.9213 3 118(4/28), 198(7/17), 284(10/11) -336.9681
8 | 514.3762 4 124(5/04), 126(5/06), 198(7/17), 286 -337.4471
9 | 5144183 4 114(4/24), 116(4/26), 196(7/15), 286 -335.2888
10| 1408.135 1 124(5/04) -335.9760

Therefore, those estimated change-points explain the humidity situation in
Seoul. <Figure 4(c)> indicates that the data have a great deal of noise, and it is
very difficult to decide if an observation comes from one or the other of the two
neighboring distributions.
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<Figure 4> The simulation results of EMC for the change-point example:
" (a) The posterior histogram of change-point positions sampled by
EMC; (b) The scatter plot of the negative log-posterior values
among all models sampled by EMC vs the number of
change-points {c) A plot of the Minimum BIC estimates of the
change-point positions (the vertical (dotted) lines indicate the
change-point positions, and the mean values of observations
separated by change-point positions identified by the Minimum
BIC model) (d) The table of the mean and standard deviation
(s.d.) values of observations separated by change-point positions
of the Minimum BIC model.

5. Discussion

The multiple change-point estimation problem was solved wusing an
Evolutionary Monte Carlo algorithm with the normal observations with the
Bayesian methodology. The methodology also can be extended to observations
from other distributions and thus offers solutions to multiple change-point
problems. For calculation of the posterior probability of the multiple change-points,
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EMC algorithm works in the way that the population is updated by mutation,
crossover and exchange operators, and the updates are accepted or rejected
according to the Metropolis rule. The EMC algorithm works very well in
change—point identification in the Bayesian setup.

The effectiveness of the algorithm is summarized by two things. First, the
algorithm has incorporated the learning ability of the genetic algorithm by
evolving with crossover operators. The "learning” or adaptive nature of the
algorithm plays an important role in the simulation of EMC, especially in the early
stage of the simulation. EMC works on a population of Markov chains. Second,
the algorithm has incorporated the attractive feature of simulated annealing by
sampling along a temperature ladder. The simulation at high temperature can help
the system escape from local minima, and this substantially accelerates tl}e' mixing
of the system. It is known that selection is an essential ingredient in all
evolutionary processes.

In this paper, EMC algorithm is adopted for the Bayesian change-point identi
—fication, it is already applicable in many other areas such as the statistical model
selection problem (George and McCulloch (1993), Brown and Vannucci (1998)) and
real parameter problems (Liang and Wong (1999b)). All computational results
show the effectiveness of the crossover operator, and thus EMC algorithm.

Finally, the multiple change-point problems in other situations such as non
-parametric Bayesian model, or time series model can be considered and further
research 1s expected in the change analysis.
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