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Minimum Variance Unbiased Estimation for the
Maximum Entropy of the Transformed Inverse

Gaussian Random Variable by Y= X 12
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Abstract

The concept of entropy, introduced in communication theory by Shannon (1948)
as a measure of uncertainty, is of prime interest in information-theoretic statistics.
This paper considers the minimum variance unbiased estimation for the maximum

entropy of the transformed inverse Gaussian random variable by ¥=X 2 The
properties of the derived UMVU estimator is investigated.
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1. Introduction

The concept of entropy, introduced in communication theory by Shannon (1948)
as a measure of uncertainty, has been of prime interest in information—theoretic
statistics. The Shannon entropy of a continuous random variable X with a density
function f(z) is given by

H(f)= - f_°° (@) log £ (z) da. (1.1)

Attempts have been made to extend and generalize the Shannon entropy and as a
result, various types of entropy measures developed can be found in the literature;
for instance, see Havrda and Charvat (1967), Burbea and Rao (1982), and Kapur
and Kesavan (1992).

Jayens (1957) was the first to use the Shannon entropy in the domain of
statistical inference. The maximum entropy(ME) principle formulated by Jayens
(1957) is a method of deriving the probability distribution that maximizes the
Shannon entropy subject to given constraints, and it can be stated as follows. Let
a continuous random variable X take a density function f(z) defined on the
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interval [a,b], —c0o <a<b< oo . Given m independent constraints
b
BAT(X))= [ T f@dz=0,,i=1,m, 12)

where T.(z)'s are absolutely integrable functions with respect to f(z), the
probability distribution with maximum entropy, if it exists, takes the density
function given by
F@)=exp{— Xy = N\ T} (@)= A\ Tylz)— - = A, T, (2)}, (1.3
where Ay, A;,-00,A,, are Lagrange multipliers and can be determined from the
constraints (1.2). The ME principle has quite broad range of applications. One
example is that most of well-known distributions in the field of statistics are
characterized as the ME distribution subject to certain constraints; see Kapur &
Kesavan (1992) and Ahmed & Gokhale (1989) for a detailed list of specific
constraints and the corresponding ME distributions.
The inverse Gaussian distribution, abbreviated IG (p,)\), with the probability

density function
1/2 RY;
f(a:;u,)\)=( 3) exp{—)\—(x—{‘i}, z>0,4>0,A>0 (14)

2nx uz

does not fall into this category, as stated in Mudholkar and Tian (2002). The
technical details, not provided in Mudholkar and Tian (2002), can be described as
follows. Following the manner of Singh (1998), the expectation of —log f(z;u,\)
yields the constraints for (1.4) as

Ef(logX)= ‘/mlogxf(:v;u,)\)dx,
0

E(X)= - s, A)dz,

+(X) /0 z flx; ) de

E(x )= fo o~ f (s \) da.
The density function with maximum entropy under the constraints is given by
f (@)= exp(- AO—)\llogx-—)\Qa:—)gx_l). (1.5
From the fact that
f f(z)dz = f exp(— A—Mlogz— Az — A3z~ 1)dx =1, (1.6)
0 0
it can be obtained that
o / z Mexp(— Az — Az Y de =200/ 0)" T K L (20/35%), (17)
0

where K, denotes the modified Bessel function of the third kind with index ».

Thus, A, is obtained as
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N =log{200/2) MK, (2/300) ) (1.8)
From (1.6), A\, is also found as

)\Ozlog/ :vﬁ'\‘exp(— )\Q:t—)\3z_1)dx. 1.9
0

To determine A;,A, and Ay, each of (1.8) and (1.9) is differentiated with respect
to A;,A, and A; and then the obtained equations are solved simultaneously.

However, it is a technically difficult task. For this reason, Mudholkar and Tian
(2002) introduced an entropy characterization of the IG (u,A) distribution using a
different approach. Mudholkar and Tian (2002) also presented a consistent
estimator of the entropy, formed by replacing a parameter with its consistent
estimator, and used it to construct a test of fit for the JG(u,\) distribution.
However, the derivation of the UMVU estimator of the entropy was not
considered.

This paper deals with the minimum variance unbiased estimation for the
maximum entropy of the transformed inverse Gaussian random variable by
Y=X"'? In section 2, the UMVU estimator of the entropy is derived and its
variance is given. In section 3, the distributional behaviour of the derived UMVU
estimator is investigated. The brief conclusions are made in section 4.

2. Minimum variance unbiased estimation

Let X be an inverse Gaussian random variable with the density function (1.4).
Following Mudholkar and Tian (2002), the transformed inverse Gaussian random
variable by Y=X ~12 takes the density function

2
g(y;y,§2)= (—:{—2)1/2exp{ — —(y;{—;ylgz—}, y=0,v>0, §2 > 0, (2.1)
where v=1/p and & =1/X . Several density curves of Y are depicted in
<Figure 1> when X is distributed as JIG(u,)\) with p=1 for the values of
A=0.5,1,2,4,16 . The shape of the density g(y;u,{Z) is highly skewed when A

is small(ie. € is large), whereas it is nearly symmetric when X is large(ie. € is
small).
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Density
N

<Figure 1> Probability density curves of ¥ with v=1 for five values of &

Mudholkar and Tian (2002) introduced an entropy characterization of the inverse
Gaussian distribution on the basis of the density function (2.1). The following is

the characterization result.

Theorem 2.1 [Mudholkar and Tian (2002)]. The random variable X following
the inverse Gaussian distribution is characterized by the property that Y= X~ 1/2
attains maximum entropy among all nonnegative, absolutely continuous random

variables Y subject to constraints E(Y_ 2)2 1/v and E(Y2)= v+§2 .

If X is distributed as 7G (u,\), then the maximum entropy of Y is given by
Hg)= log(§27re/2)/2 , Where §2=E(Y2)— 1/E(Y™%) . The entropy Hlg)

depends on only the parameter 52 and is very similar to that of the normal

distribution with variance o*°.

The UMVU estimator of the entropy H(g) is now derived. Let a random
sample of size n, X, X,,---,X, , be drawn from an inverse Gaussian distribution.

Then a transformed sample Y= X,,»_l/ 2 {=1,,n, has the density function (2.1).

It is easily seen that two statistics, »,¥? and Y, ¥; 2, are jointly complete and

i=1 i=1
sufficient because the density function (2.1) is a member of exponential family. To
obtain the UMVU estimator based on these statistics, the following lemma is

used.

Lemma 2.1 Let Z be a chi-squared random variable with m degrees of
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freedom. Then, the mean of Z = log Z 1is given by
E(Z)=1log 2+ (%) (2.2)
where 9 is the digamma function defined by (k)=dlogI'(k)/dk .

Proof. Since the moment generating function of Z° is given by
m ()= E (e %)= E(2')= 2fr(%+ t) / F(%) (2.3)

the result is immediately obtained by differentiating m .- (¢) with respect to ¢ and

setting t=0. ]

Theorem 2.2 The uniformly minimum variance unbiased estimator of the
entropy H(g) is given by

Foe L 1.7 1 (n=1
H(g)= 2log VW+2log 1 27,0( 5 ), (2.4)

T

where W,=Y? (i=1,-,n), V= E(W}—VV;) ,WH=n/EWTI and ¢ is

i=1 i=1

the digamma function.

Proof. Following Chhikara and Folks (1989), the distribution of AVy is the

7

chi-squared with n—1 degrees of freedom, where Vy = E(l/X,——l//_Y) . Two

i=1
statistics Vy, and Vy are equivalent and thus, it follows that Vy./& ~x2_,
Applying the lemma 2.1 gives the expected value of log V), as

E(log V)= log & +1log 2+ 9 (nT—l) (2.5)

Taking ¢(Vy)= {log Vi +log(ne/4)— ¢ ((n—1)/2)}/2 as an estimator of H({g)
and using the result (2.5) give

2
E{¢(Vy)}= %1og(€;“°’). (26)

Thus, ¢(Vy) is an unbiased estimator of H(g). Since Vy is complete and

sufficient, ¢(Vy,) is the uniformly minimum variance unbiased estimator of H(g)

by the Lehmann-Scheffe theorem(for instance, see Hogg, McKean and Craig
(2005), p. 387). This completes the proof. O

Lemma 2.2 The variance of H(g) is given by
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Var {B(g)} = -}w( i ) @)

where ¢ is the trigamma function defined by ¢'(k)=d’logI'(k)/dk® .

Proof. Since Vy/€ is distributed as the chi-squared with n—1 degrees of
freedom, the moment generating function of log( V! 52) is obtainable by replacing
m with n—1 in (2.3). Differentiating m . (t) twice with respect to ¢t and setting
t=0 give Var{log (V,,-/§2)}= ¥ {(n—1)/2}. The .result immediately follows from
the fact that Var{log (Vy/&)}= Var(log V) and Var{H(g)}= Var(log Vy;)/4. O

Lemma 2.3 The variance of H(g) given in (2.7) converges to zero as n tends
to infinity.

Proof. By the series expansion of ‘the trigamma function(see, Abramowitz and

Stegun (1970), p. 260), the variance of H(g) is expressible as E n+2k—1)"

Since the infinite series Y, (n+2k—1)"% is equal to (n+1)?/{4n(n—1)?} and

k=0

the term (n+1)?/{4n(n—1)?} converges to zero as n—co, the result follows. [

3. Distributional behaviour of the UMVU estimator

It is known that a logarithmic transformed chi-squared random variable is well
approximated by the normal distribution with proper mean and variance(see Olshen

(1937)). The estimator H(g) is a function of a logarithmic transformed
chi-squared random variable and thus, it is expected to be also well approximated
by the normal distribution with mean H(g) and variance given by (2.7).

Denote log(Vy:/€%) by V.. Using the distributional result of Vy/& and
applying the delta method, it can be shown that V:V 1s asymptotically normally

distributed with mean p" =log (n—1) and variance o> =2/(n—1). The estimator

H(g) is expressed in terms of Vj, as

- 1 1 -1
Hlg) = 7log Viy+ 5log "~ 59| = )

1 Vi 1(n—1 1
= 5 log 2 + H(g) 5 ¥ log 2
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- % Vi + Hig)— Cln), 3.1)

where Cln)= [¢{(n—1)}/2+1og2]/2 . Using the distributional result of Vj;
and applying the delta method, it can be shown that H(g) is distributed as the
normal with mean p= H(g)+log{n—1)/2— C(n) and variance o= 1/{2(n—-1)}
as n increases. However, u approximates to H(g) because log(n—1)/2— C(n)
is close to zero for large n (see Gradshteyn and Ryzhik (2000), p. 894). Also using
the infinite series representation of the trigamma function(see Abramowitz and
Stegun (1970), p. 260) to obtain the approximate form of ¢'{(n—1)/2} yields
¥ {(n—1)/2}=2/(n—1)+R,., , where R,_, is the remainder term. By observ
-ing that R,_, vanishes with order 1/(n—1)*, the variance of H(g), for large
n, can be approximated by the first term as ¢'{(n—1)/2}/4=1/{2(n—1)} ,
which is equivalent to 3 Based on these results, it can be seen that H(g) is
approximated by the normal distribution with mean H(g) and variance
P'{(n—1)/2}/4

To confirm the normality of H(g), 10000 inverse Gaussian samples with p=1
for four values of A were generated by the algorithm of Michael et al. (1976). For
sample size, three cases were considered: n =20 (small size), n =50 (moderate
size) and n=100 (large size). The estimator H{g) was calculated from each
sample and then the calculated values were fitted to the normal distribution with
theoretically specified mean and variance.

<Table 1> provides the results on three well-known EDF tests for nor
-mality(the Kolmogorov-Smirnov D, the Carmer-von Mises W? and the
Anderson-Darling A? tests), based on 10000 simulated values of H(g). When
sample size is small(n=20), all of the tests, as“ might be expected, show
significance at the level 5%. As sample size grows(n = 50 ), goodness—of-fit for
normality shows a tendency to be much improved. The p-values of the 4% test
is observed to be less than 5% for all cases of A\, whereas D and W? tests are
appeared not to be significant at 5% for A=1,2,4 , However, all the tests show
no significance at 1% across the values of A except for the A% test when
A=0.5. Thus, it can be seen that the normality of H(g) is preserved. When
sample size is large(n=100), an evidence that H(g) follows the normal
distribution is clearly obtained, on the ground that all the tests are not significant
at the level 5% except for the A2 test when A=0.5. In addition to the testing
results, the empirical distribution of H(g) with the solid line representing a fitted

normal curve was depicted in <figures 2-4>, which show H (g) to be well
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approximated by the normal distribution provided that sample size is not small.

<Table 1> Testing results on normality based on 10000 simulated values of H (g)

n A D p—value /% p — value A2 p— value
20 05 0.0190 0.2% 1.3883 < 0.1% 11.3089 < 0.1%
1.0 0.0248 < 0.1% 2.0605 < 0.1% 13.5023 < 0.1%
2.0 0.0247 < 0.1% 2.2652 < 01% 13.8492 < 0.1%
40 0.0293 < 0.1% 2.4958 < 0.1% 14.3270 < 01%
50 05 0.0156 1.7% 0.6149 2.2% 45751 0.5%
1.0 0.0101 > 25% 0.3334 11.1% 2.8271 3.6%
2.0 0.0113 15.8% 0.3010 13.6% 2.8766 3.3%
4.0 0.0111 17% 0.3579 9.5% 3.3143 2%
100 0.5 0.0119 11.9% 0.3042 13.4% 3.4203 1.9%
1.0 0.0089 > 5% 0.0994 > 25% 1.8377 13.5%
2.0 0.0075 > 25% 0.1655 > 25% 1.6418 145%
4.0 0.0075 > 25% 0.1459 > 25% 1.4819 18.5%

P
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u
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<Figure 2> Empirical distribution of H(g) based on 10000 simulated inverse
Gaussian samples(n =20 )
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<Figure 3> Empirical distribution of H(g) based on 10000 simulated inverse
Gaussian samples(n =50 )
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4. Conclusion

In this paper, we have discussed the minimum variance unbiased estimation for
the maximum entropy of the transformed inverse Gaussian random variable by

Y=X"Y2  The UMVU estimator of the entropy was derived and its variance
was given. The distributional behaviour of the UMVU estimator was investigated.
Monte Carlo simulation results reported the UMVU estimator to be well
approximated by the normal distribution provided that sample size is not small.

The use of the UMVU estimator will be of interest in testing fit of goodness
for the inverse Gaussian distribution. This work is currently in progress.
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