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Abstract

In cancer microarray experiments, the experimenter or patient which is nested in
each experimenter often shows quite heterogeneous error variability, which should
be estimated for identifying a source of variation. Our study describes a Bayesian
method which utilizes clinical information for identifying a set of DE genes for the
class of subtypes as well as assesses and examines the experimenter effect and
patient effect which is nested in each experimenter as a source of variation. We
propose a Bayesian multilevel mixed effect model based on analysis of covariance
(ANACOVA). The Bayesian multilevel mixed effect model is a combination of the
multilevel mixed effect model and the Bayesian hierarchical model, which provides
a flexible way of defining a suitable correlation structure among genes.

Keywords : Analysis of covariance; Bayesian hierarchical model; ¢cDNA micro
—array; multilevel mixed effect model.

1. Introduction

DNA microarray technology is a major tool for high throughput analysis that
simultaneously measures the expression levels of thousands of genes in biological
sciences, in general and in cancer studies, in particular. The expression levels are
of ten measured for each gene and each patient with various tumor subtypes
under different experimenters. One usually normalizes the data in order to remove
the systematic variation of various sources, which includes difference in labeling
efficiency between two fluorescent dyes, spatial effect such as print-tip effect,
array effect and etc (Yang et al, 2002). However, so far as we know, there is no
report on the experimenter effect or patient effect which is nested in each
experimenter as a potential source of variation. The aim of this study is to
identify the experimenter effect or patient effect which is nested in each

1) Postdoctoral associate, Department of Epidemiology and Public Health, School of Me
-dicine, Yale university, New Haven, CT 06520, USA.

2) Professor, Brain Korea 21 Project for Medical Science, College of Medicine, Yonsei
University, Seoul, 120-752, Korea.

3) Professor, Department of Applied Statistics, Yonsei University, Seoul, 120-749, Korea.
Correspondence : bskim@yonsei.ac.kr



702 Inyoung Kim, Sun Young Rha and Byung Soo Kim

experimenter as a new source of variation and to develop a proper statistical
model for its identification based on a ¢cDNA microarray of colorectal cancers.

One of the major interests of cancer microarray experiments is to identify a set
of DE genes among various tumor subtypes. An analysis of variance (ANOVA) is
a natural method of examining the data. The ANOVA modeling approaches have
been proposed both for ¢cDNA microarray data (Kerr et al, 2000; Kerr and
Churchill, 2001; Wolfinger et al, 2001) and for oligonucleotide data (Chu et al,
2002; Hsieh et al, 2003). The ANACOVA model extends ANOVA by adding
covariates in the model to adjust potential confounding factors among subtypes.

A Bayesian approach was developed to simultaneously analyze a large number
of genes and to identify DE genes between two comparison groups, e.g. normal
and cancer groups, by Ibrahim et al (2002). Townsend and Hartl (2002) also
proposed Bayesian framework to analyze normalized microarray data acquired by
any replicated experimental design in which any number of treatments were
studied using a continuous chain of comparisons. Tadesse et al (2003) formulated
a hierarchical Bayesian model, which provided a flexible way of defining a suitable
correlation structure among genes. Tadesse et al. (2003) modeled gene expression
measures as the censored data accounting for undetected or unreliable transcripts
by the quantification limits of technology. However these approaches considered a
patient or an experimenter as a replication and did not account for heterogeneous
error components on different patients or different experimenters in microarray
data.

The experimenter or patient effect which is nested in each experimenter often
shows quite heterogeneous error variability, which should be estimated for
identifying a source of variation. In the ¢cDNA microarray experiment of colorectal
cancer we observe the possibility that the experimenter effect is a major source of
variation. The cluster analysis indicates that the experimenter effect still exists
even after the normalization. These results are given in <Section 4>. Clinical
information of patients has been used to select a set of DE genes between tumors
in several cancer studies including the breast cancer (van de Vijiver et al, 2002)
and the lymphoma (Rosenwald et al, 2002). We have three clinical variables of
interest, namely the location (colon, rectum), the CEA value and the stage (B, C
,D) of colorectal cancer. CEA stands for carcinoembryonic antigen which clinicians
use to monitor the progress of the colorectal cancer after the initial treatment. The
threshold value of CEA is usually set to be 5 FEach of these three clinical
variables defines a class of subtypes. The primary interest in the subtype analysis
is to detect a set of DE genes between subtypes of a given clinical variable and
to validate the chosen set of DE genes for the classification. For example, we are
interested in identifying a set of genes that discriminate the colon cancer from the
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rectal cancer. For the stage variable, we are interested in the pairwise comparison.
e.g. B versus C and so on.

We develop a new Bayesian method which utilizes clinical information for
identifying a set of DE genes for the class of subtypes as well as assesses and
examines the experimenter effect or patient effect which is nested in each
experimenter as a source of variation. We propose a Bayesian multilevel mixed
effect model based on ANACOVA. The Bayesian multilevel mixed effect model is
a combination of the multilevel mixed effect model and the Bayesian hierarchical
model, which provides a flexible way of defining a suitable correlation structure
among genes. We consider gene, subtype and interaction between gene and
subtype as fixed effects. Unlike other Bayesian approaches (Ibrahim et al, 2002;
Townsend and Hartl, 2002; Tadesse et al., 2003), which consider a patient or an
experimenter as a replication, we treat both the experimenter and the patient
which is nested in the experimenter as random effects. The clinical variables are
used as covariates.

The paper is organized as follows. In section 2 we describe the material of
microarray experiment and microarray data pre-processing. We also discuss how
the interaction term becomes a key parameter for identifying a set of DE genes
for the class of subtypes. In section 3 we describe a Bayesian multilevel mixed
effect model. In section 4 we apply the Bayesian approach to the cDNA
microarray experiments of the 68 colorectal cancer patients. We observed that the
experimenter effect was a major source of the variation but the patient which was
nested in the experimenter was not. We compared two approaches of gene
selection; one is based on the Bayesian multilevel mixed effect model and the
other is based on the permutation test with the t-statistic.c The Bayesian
multilevel mixed effect model could make the mild improvement over the
permutation test in prediction rate. We believe that this improvement is due to
reducing error variability by explicitly incorporating in the model the experimenter
effect and using clinical information such as CEA and stages. Section 5 contains
concluding remarks

2. Materials and Data

Cancer tissues were obtained during the surgical operations from each of 67
colorectal cancer patients at Severance Hospital, Yonsei Cancer Center, Yonsei
University College of Medicine, Seoul, Korea, from May to December 2002. We
conducted a ¢cDNA microarray experiment using a common reference design with
cDNA microarrays containing 17,000 human genes. We pooled eleven cancer cell
lines and used it for the common reference. These eleven cancer cell lines are as
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follows: AGS, MDA-MB-231, HCT-116, SH-Hep-1, A549, HL-60, MOLT-4, HelLa,
HT-1080, Caki-2 and US7MG (American Type Culture Collection). The fresh
specimens of cancer tissues obtained from colorectal cancer patients during
surgery were snap-frozen in liquid nitrogen right after the resection and stored at
-70°C until required. After total RNAs were extracted from fresh frozen tissues,
50g of purified RNAs were labeled and hybridized to ¢cDNA microarrays based on
the protocol established in Cancer Metastasis Research Center (Yonsei University,
Korea)(Park et al., 2004).

Both a within-print tip group intensity dependent and scale adjustment
normalizations between arrays were used to normalize the log intensity ratio,

M= log, %, for the evaluation of the relative intensity, where R and G represent

the cyd and cy3 fluorescent intensities, respectively. The genes whose signals
were missing in more than 20% of the specimens were removed from the
analysis. The missing values were estimated using the 10-nearest neighbor
method. Imputation methods other than the KNN method were developed recently
(Kim H. et al, 2005, Jornsten et al., 2005; Scheel et al., 2005). The values for
multiple spots were also averaged. Finally, a data set represented by a 12850 X 68
matrix was obtained for the analysis, where 12850 represents the number of genes
and 68 stands for the number of tumor arrays. <Table 1> shows the numbers of
tumors in three classes of subtypes; the location (colon versus rectum), CEA level
(CEA <5 versus CEA>5), and the stage (B, C and D).

<Table 1> The number of tumors in each subtype under each experimenter

Location Stage CEA
Experimenter | Colon Rectum B C D <5 >5
1 22 20 18 16 6 19 23
2 13 13 17 8 3 20 6

3. Model and Method

3.1 Multilevel mixed effect model

A multilevel mixed effect model to describe y;;, which represents the log

intensity ratio for the ith gene of the jth patient in the kth group within the [th
experimenter is
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where p; is the mean expression level for the ith gene in the kth group. We
assume that p, can be expressed as a linear combination of main gene effects a;,
group effects 3, and the interaction effects +;, ie. pp=a;+ 8.+ The 7 is
the experimenter random effect and s, is the jth patient random effect which is

nested in the [th experimenter effect. That is, the experimenter is the first level
group and the patient is the second level group which is nested in the first level

group. The zfy; is a @-vector of the mth power of the covariates for jth patient
of kth group in Ith experimenter, where @ is the number of covariates. The A,

is the corresponding @-vector of regression parameters. The experimenter random
effects 7, are assumed to be independent of the different [, the patient random

effects nested in the experimenter random effect s;,) are assumed to be
independent for different j and [ and to be independent of the 1, Within—group
error terms e,;, are assumed to be independent for different ¢, j, k¥ and ! and to
be independent of the random effects.

3.2 Bayesian hierarchical method

We develop a Bayesian hierarchical method to fit the model (3.1). Let
= (a,8,%:M0%,0670%) denote the vector of the parameters, where o=
(cvl,ozz,...,ap)7 B= By, Bx), 'Y=(’Yu7---7’)’p1() and )‘m:(’\llvn""”\lerL)‘ Let
D= (y,7,s;()) denote the data, where y is a pXn (n=mn,, +...+ ng;) matrix with
elements y,;,,. Let f.(r) and f,(s;;) be the normal density functions of 7, and

() respectively. The likelihood function for @ is then given by

Ty

=lk=1j=1i=

M
yijl."l_(ai + Byt 2 /\nnx;'I:I'*'s (}+Tl)

x exp| = 2 r— HETAC TS

We specify flexible priors that define the suitable correlation structures between
genes (o; and «;) or between group categories (v, and 7%, ) and allow an

efficient calculation. These parameters have the following prior distributions:

ai' (ao,oi) ~ N(ao’03)7 cvol(a(,,vi) ~ N(ao,vi), 5k| (,B(m,a%;) ~ N(ﬂukvaé)y
Boid (buk"v%i) ~ N(bomv?j)y Yirl (’Yﬂ)v"?y) ~ N('YiO’o%)! Yol (dma'U?,) ~ N(d,»o,v?/),

)‘iqml()‘itbo'i) ~ N(AiovU?\): /\'i()l(ei()vv?\) ~ N(ei()vvi)v 3j(1)|0'§ ~ N(Oyai), 05 ~ [G(As,Bs),
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mlo? ~ N(0,02), o> ~ IG(A,,B.) and ¢* ~ IG(A,B), where o* ~ IG(A,B) denote

a the inverse-gamma distribution with density
BY a1 -

?(A—)(o ) exp( g ).

Since the conjugate prior families for (e, 3,7 A,) and (0% 0% 0%) consist of

normal distributions and inverse gamma distributions, respectively, the posterior
samples can then easily be drawn using Gibb sampling or Markov chain Monte
Carlo (MCMC) sampling. The derivation of the posterior distributions is given in
Appendix. We fit the model (3.1) with M=1, L=2, K=2, p=12850. The ny's

are numbers of tumors in each class of subtypes two comparison subtypes under

2 2

each experimenter. The hyperprior variances, o, and o) control the strength of the

prior correlation among the gene effects and among the interaction effects,
respectively. The prior correlations are given by

2 2
(% 7),),

2
2 ’Ua) = —QT’ CO’I"'I" (fyik’,Yik'|di0’a’2Y’vgf) =

Corr(a,,a;lay, o5,

2

2 2°
a T Vg (7',y+’U7

For noninformative priors we set ai, af; and 03 to 100. The hyperprior means
. . 2 2 . .
are set to 0 and the hyperprior variances v, and v, are chosen to yield prior

correlations of order 1072 A bumn-in of 10,000 and a main run of 10,000 were
taken.

3.3 Gene selection criterion

The most interesting question is that of which genes are differentially expressed
in each class of subtypes. The key parameter of interest is a contrast of
interaction effects which is the first two terms in equation (3.3.1), as was noted in
Kerr and Churchill (2001). The parameter for identifying a set of DE genes
between group categories k& and k' in each class of subtypes could be formulated
as

Vi = Vi = (e = Yer)s 33.1)
where the gene ¢ has a fairly constant expression across tissue types to ensure
that v, —+., is close to zero. The same gene c¢ will be used as a reference
against which all genes are compared. We simply make the criterion Z;, = v;;x — Vi,
following the line of Tadesse et al. (2003), who showed that the criterion was
quite robust to the different reference genes.

4. Results
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4.1 Hierarchical clustering analysis using colorectal cancer data

Our interest lies in identifying DE genes in each class of subtypes, e.g., colon
versus rectal cancers, CEA>5 versus CEA<5, stages B versus C, stages B
versus D, and stage C versus D. The number of tumors in each subtype, the
location (colon versus rectum), CEA level (CEA=5 versus CEA<5) and the
stage (B, C, and D), are given in <Table 1>. Kim B.S. et al. (2005) noted that in
contrast to detecting an overwhelming number of DE genes between normal and
tumor tissues they failed to detect a significant number of genes in subtypes
analysis.
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As an initial step, we employed hierarchical clustering analysis for various class
of subtypes, colon versus rectal cancers, CEA=5 versus CEA< 5, stages B
versus C, stages B versus D, and stages C versus D. We observed that the
experimenter effect still existed even after normalizations as is shown in <figure
1> for the case of colon versus rectal cancers. For other classes of subtypes we
also noticed similar observations through cluster dendrograms (data not shown).
We applied the Bayesian multilevel mixed effect model (3.1) to test the
significance of the experimenter effect and to incorporate clinical information for
identifying a set of DE genes between two comparison subtypes.
<Figure 1> Cluster dendrogram of colon versus rectum tumors. “E1C'" means

colon tumor by experimenter 1 (Expl) and “'EZR’" means rectum
tumor by experimenter 2 (Exp2).
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4.2 Gene selection based on the Bayesian multilevel mixed effect model

We use CEA as a continuous variable and stage as a categorical variable. To
detect DE genes between colon and rectal cancers we utilize CEA and stage as
covariates in the model (3.1). The CEA was used as a covariate for detecting DE
genes among stages. The stage was employed as a covariate when identifying
DE genes between CEA>=5 and CEA<S,

To fit the Bayesian multilevel mixed effect model we set o2, a?, and af to 100
for noninformative prior. The hyperprior means were set to 0 and the hyperprior
variances vi and v“j were chosen to yield prior correlations of order 10™ . After a
burn-in of 10,000 iterations, a main run of 10,000 was used. We estimated the
parameters by taking the averages of MCMC samples. The estimates and intervals
of o, o, and o, are given in <Table 2>.

<Table 2> The estimates of o, o
model with M=1

and o, in Bayesian multilevel mixed effect

59

Class of 95% CI of 95% CI of

95% CI of o,
subtypes o, o,

Colon vs Rectal) ) | 10 40605561 [0.05( [0.021,0.102] [0.63| [0.625,0.656]
cancers

CEA=>5 vs <5|004] [0.019,0.185] |0.07] [0.051,0.105] |0.55] [0544.0.571]

Stages B vs C[0.02] [0.002,0.146] | 0.11] [0.090,0.147) |0.47] [0.459,0.483]

Stages B vs D |0.03] [0.004,0.158] [0.06] 10.044,0.108] |0.51] [0.495,0525]

Stages C vs D [0.03[ [0.006,0.159] [0.09] [0.066,0.136) [0.45| [0.436,0.468]

We noticed that the estimate of o, for colon and rectal cancers was much
larger than estimates of o. for other classes of subtypes, namely, CEA>5 versus
CEA<5, stages B versus C, stages B versus D, and stages C versus D. We also
observed that the estimates of o, for all classes of subtypes were small. The
results imply that the experimenter effect should be incorporated for the analysis
of the data. We also note from the widths of the 95% confidence intervals in
<Table 2> that ¢ is estimated relatively precisely, whereas o, and o, vary.

s

The top 10 genes selected based on the proportion of

$=1,...,10,000 and the highest posterior density (HPD) intervals for each class of
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subtypes are given in <Tables 3-7>, where ZiS is the Sth MCMC samples of

Z., SE(Z;) is the standard error of Z, and z, is the %th upper quantile of

2
standard normal distribution. Genes will be chosen if the 100(1-7)% HPD intervals
for Z; do not contain 0, where r is arbitrarily set by the investigator. Since we

could not select any gene if r was larger than 10! we set r to 107* We
identified two DE genes and three DE genes between colon versus rectal cancers
and between CEA>5 versus CEA>5, respectively. We found three DE genes for
stages B versus C, detected three DE genes for stages B versus D, and selected
five DE genes for stages C versus D. With r=10"°, we noted that the fourteen
DE genes and twelves DE genes were identified for colon versus rectal cancers
and CEA>=5 versus CEA>5, respectively. We also detected three DE genes,
twenty-two DE genes, and eight DE genes between stages B and C, between
stages B and D, and between stages C and D, respectively.

Furthermore we used two sample t-statistic with unequal variances. We
calculated the family-wise error rate (FWER) using Dudoit et al's maxT
procedure (2002), the false discovery rate (FDR) using Tusher et al’s SAM
procedure (2001), and positive false discovery rate (pFDR) using Story’s Bayesian
approach (2002). We could detect 36 DE genes for CEA>=5 vs CEA<5 with
FDR=0.31, and 9 DE genes between stages B and D with FDR=0.33. We failed to
detect DE genes for colon versus rectal cancers. We ranked genes based on
absolute values of the t-statisticc. We noticed that all ten genes out of 10 genes
were in the top 50 gene list selected from a permutation test with a t-statistic for
colon versus rectal tumors. For CEA>5 versus CEA>D, there were six out of 10
genes in the top 50 gene list selected from a permutation test with a t-statistic.
We also observed that all ten genes, three genes, four genes out of 10 genes were
in the top 50 gene list between stages B versus C, stages B versus D, and stages
C versus D, respectively.

<Table 3> Top 10 genes, which were selected by Bayesian multilevel linear
mixed effect model, that best discriminate between colon and rectal

cancers, and the gene ontology of top 10 genes. Z,,»S is the Sth
-4
- 2

quantile of standard normal distribution. "Unknown” means that the

MCMC samples of Z;, §=1,...,10000. z -, is the th upper

gene name or ontology is unknown.
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Prop. of

) T Rank
Subtyvpe | Gene Id Gene name Zl z° 2z .z (1-10")% of
SE(Z,) z - %’ -"—'Zi) HPD t-stat
AAd31203 | D (Hepd0) homolog g g 2x107* (001203581 |
subfamily I3, member 6
Alsaoggg | Bldchvde dehwdrorenase g 5, 2107 [-0423,-0010] | 5
2 family (mitochondrial)
Al432671 Unknown 0.13 4x107* {0.002.0.264] | 2
AA434102 Lectin, gzllud()ﬁldc—?)mdmg -0 5% 10_4 [-0.553.0.002] 12
soluble, 9 1galectin 9)
Colon Polymerase (RNA) 1T
vs AlI262115 (DNA directed) -0.42 510" [-0.843.0.003]1 | 6
) polyvpeptide A, 220kDa
Rectum Lectin, galactoside-hinding,
AA485353 T =021 6x1071 [-0.431,0003] | 4
soluble, 3 hinding protein
R87642 LOC440135 0.15 7x1071 [-0.004,0.302] | 14
AlA75738 Likely ortholog of -0.16 7x1071 [-0.333,0.005] 1
Aloizgog | Trerosyac oidase fom | g )5 7x10 [-02680004) | 3
AI251639 Unknown 0.15 8x10"* {-0.006,0.3101 | 16
<Table 4> Top 10 genes, which were selected by Bayesian multilevel linear
mixed effect model, that best discriminate between CEA =5 and
CEA<5, and the gene ontology of top 10 genes. Z,-,S is the &th
—4
MCMC samples of Z;, §=1,...,10000. z . 1is the 5 th upper
2
quantile of standard normal distribution. "Unknown” means that the
gene name or ontology is unknown.
Prop. of
e Rank
Subtype | Gene Id Gene name Z[ z? -z Z.) (1-10 )% of
SE(Z) ¢ i HPD t-stat
Hadgsy | Crspase 4 apovtorclated ) 4 g 2107 (-0.357.-0.0121 | 378
cysteine protease
AI309037 Unknown 0.16 4x107* [0.004,0.322] 1
y Hypothetical protein - _
X —
AI380209 MGCE2473 0.22 5Xx10 [-0.003,0.397] | 154
AA457543 Unknown 0.20 7x1074 [-0.3011,0.002] | 498
CEA=5 Guanine nucleotide binding
= Ui . " ~ :
vs AA485431 protein (G protein) alpha 12 0.15 7x10 (-0.01,0.002] 82
CEA>5S — —
AAgY1196 | Louboevteassociated Tgmlike | 5 1x1073 [-0.315,0.009] | 228
receptor 1
AI003792 Ethanolamine kinase 1 0.23 1x107* [-0.017,0477] | 42
AI393078 | Homeo hox B6 Complement | 0.30 1%x1073 [-0.022,0619] | 223
T68274 component 8 heta ~0.24 1% 10,3 [-0.504.0.018] 46
polypeptide
AATO1476 €D14 antigen -0.16 1x107° [-0.3250.014] | 39
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4.3 Classifying test sets using the support vector machine (SVM)

In order to measure the predictive accuracy based on the selected genes the
data set was randomly divided into training and test sets with a ratio of 2:1. We
generated 10 pairs of training and test sets. We used SVM for the classification
of the test set. We compared the prediction rates based on the top 10 genes
selected by our Bayesian approach with the rates based on the top 10 genes in
terms of the t-statistic using SVM. Using gene selection by our Bayesian
approach we observed 0.54, 0.66, 054, 074, and 0.65, for the prediction rates of
colon versus rectal cancers, CEA>5 versus CEA<5, stages B versus C, stages B
versus D, and stages C versus D, respectively. The prediction rates of two
subtypes in the aforementioned classes based on genes selected by t-statistic were
052, 063, 0.51, 0.71 and 0.63. The result shows that our Bayesian approach makes
mild improvements in prediction rates in comparison with the gene selection
approach using the t-statistic. This improvement was achieved by identifying a
new source of variation, experimenter effect, and using clinical information such as
CEA and stages.

The prediction rates for colon versus rectal cancers and stages B versus C
were relatively low among other classes of subtypes because of their biological
similarities and complex structures. On the other hand, the prediction rates for
stages B versus D was relatively large because of their biological heterogeneosity.

<Table 5> Top 10 genes, which were selected by Bayesian multilevel linear
mixed effect model, that best discriminate between stages B and
C, and the gene ontology of top 10 genes. Z° is the Sth MCMC
-4
5 2
of standard normal distribution. "Unknown” means that the gene

samples of Z;, S=1,...,10000. z,,-4 is the th upper quantile

name or ontology is unknown.

Prop. of _
. (1_10_4)% Rank
Subtype | Gene Id Gene name Z, VA (=2 .2 ) of
SE(Z,) %‘ I"T‘ HPD t-stat
AAgszdpy | Mitochondrial bosomal 4 o) 5x107% [0.003,0409] | 2
protein S16
Tyrosine 3 5
Hepsy | moneoxveenase/typtonhan 5.1 ) ) o 5x107* [-0.328,-0.0011 | 3
B monooxygenase activation
vs protein, beta polypeptide
C MADS hox transcription
AAS504131 (enhancer factor2 polypeptide C| -0.21 9x107* [-0.429,0.009] 5
{myocvte enhancer factor 2C)
Al371315 F-box protein 16 U2(RNU2) { -0.16 1x1073 [-0.333,0.017] 6
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<Table 5> Continued

Prop. of Rank

a4
Subtvpe | Gene Id Gene name ZI z? (1-107")% of
Sz E Tl Ze )| D

small nucles A&-0.15 ~ |
AALS6085 small nuclear RNA&-0.15 015 1><10v'; [-0.314.0.018] |

auxiliary factor 1-like 3

T81764 Cell division cycle 27 -0.19 2x107% [~0.411,0.024] 36

e Heterogencous tuclear o 3 aan o7 -

B AA4GHI rihonucieoprotein C (C1/C2) 022 2x10 1-0.461,0027] >
Vs AA489055 Dihvdrofolate reductase ~0.12 2%x107 3 [~0.253,0.015] | 14
¢ AA490894 Calpistatin -0.15 2x107° [-0317,0021] | 7

AAQ48055 Chromobox homolog 5 (HP1 ~0.21 2% 10" 3 [-0.460.0.031] 48

alpha homolog Drosophila)

<Table 6> Top 10 genes, which were selected by Bayesian multilevel linear
mixed effect model, that best discriminate between stages B and
D, and the gene ontology of top 10 genes. Zf is the Sth MCMC
—4
5 2
of standard normal distribution. "Unknown” means that the gene

samples of Z;, §=1,...,10000. z,-. is the th upper quantile

name or ontology is unknown.

[,
. Prop. of (1—10-)% Rank
Subtype | Gene Id Gene name Z1 VA (-7 7.2 of
SE(Z,) = %‘” %’ HPD t-stat
AA915975 Unknown 0.31 4x10"? [0.014,0.595] 138
AA970766 Selenoprotein S 0.30 5x107* (0.009,05891 | 112
Al251322 Unknown -0.24 5x1071 [-0.480,-0.006] | 1
AAd7742g | Polymerase (RNA) I (DNA ) ) 5 8x107° (-1.2520173] | 2
dirccted) polvpeptide G
Solute carrier family 6
B Al241088 (neurotransmitter transporter, { 0.29 1x10™ 3 [-0.010,0.593] 57
Vs GABA) member 13
D Al361422 | Hypothetical protein FLJ14721 [-0.23 1x10°°3 [-0.479.0.016] § 357
AA449459 bulfotransfcras_c family 1E, 027 1107 3 [-0.025.0.568] 59
estrogen-preferring, member 1
AI3717701 Unknown 0.25 2%x107° [-0.026,0534] | 10
AI095114 | Hypothetical protein FLJ14451 | 0.22 2x1073 [-0.024,0.459] | 444
Hypothetical protein . _3
2 —
AA970729 LOCIHIRSD 0.12 2x10 [-0.014,0.263] | 363

5. Discussion

We have proposed the Bayesian multilevel mixed effect model to assess and
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examine the experimenter effect or patient effect which is nested in each
experimenter as well as to utilize clinical information for identifying a set of DE
genes in various classes of subtypes. The model can identify the experimenter
effect or patient effect which is nested in each experimenter as a new source of
the variation. This model can be used to analyze the inter-laboratory microarray
data. In our ¢cDNA microarray experiment of colorectal cancers, we noticed that
the experimenter effect was a major source of the variation but the patient which
was nested in the experimenter was not. We also observed that our Bayesian
approach could make mild improvement over the permutation test in prediction
rate. The improvement was achieved due to identifying another source of
variation, namely, the experimenter effect, and utilizing clinical information in the
Bayesian multilevel mixed effect model. We note that the hierarchical Bayseain
model proposed in the paper is not novel. However, as far as we know, it is the
first report which explicitly sort out the experimenter effect as a source of a
systematic effect in the analysis of gene expression data.

However, the small sample size of stage D and low prediction rates indicate
that the current sample size 68, is not large enough to detect the multiple
mechanisms that underlie each class of subtypes. One possible reason of the low
prediction rates may be that CEA and stage do not contain sufficient information
to identify a set of DE genes for the class of subtype, e.g. colon versus rectal
cancers or stages B versus C.

Our Bayesian method was developed under the normality assumption in terms
of error. It is more useful that we extend the method without this assumption,
which is left for a further research. It is also interesting to detect both parametric
and nonparametric components of covariates by adding the nonparametric function,

A
f, in the model (3.1), Y, A;.,nw;’,i,+ f(z;,). We also note in this study that
1

different gene sets provide more or less the same prediction rate. This aspect may
be viewed from the multiplicity of model and integrating these different models
would be valuable in the future research.

<Table 7> Top 10 genes, which were selected by Bayesian multilevel linear
mixed effect model, that best discriminate between C and D, and

the gene ontology of top 10 genes. Z° is the Sth MCMC samples

—4

of Z, §=1,...,10000. =2 is the

10~ th upper quantile of

2
.standard normal distribution. "Unknown” means that the gene
name or ontology is unknown.
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Prop. of _ Rank
e | Gone 10 A z| z L, ) Q-1079% |7 ¢
SE(Z) & L“‘_‘ L)' HPD t-stat

Nuclear factor of activated,
AA679278 T-cells, evtoplasmic 0.35 2x1074 [0.051,0.652] 30

calcineurin-dependent 1

Al372014 LOCH39987 0.17 8x107* [0.004,0.342) 7
AAT00883 | Step 1T splicing factor SLU7 | ~0.16 8x107* (-0.320.-0.003] | 51
N93636 Unknown 0.24 1x107% (0.001,0.482] { 319
C
vs T63324 Unknown 025 1x107° [0.001,0.499] | 106
D

Cytochrome P40, family 27,

7 -0 —3 — g .
N66957 subfumily A, polypeptide 1 0.24 1x10 (-0.482.000] 2
AI216166 Chromosome 6 open reading —0.24 1x10° 3 [-0.481.-0.001] | 20
frame 11
Al341422 Unknown 021 1x107% [-0.004,0.422]) | 9
AI361167 Unknown -0.20 1x1073 [-0.405,0.004] | 40
AI950855 Splicing factor 1 -0.24 1x1073 {-0.484,0011] | 74
Appendix

Samples from the joint posterior distribution p(flD) are drawn using Markov
Chain Monte Carlo (MCMC) techniques, and in particular, Gibbs sampling, which
iteratively samples from the collection of full conditionals and produces draws
from the joint posterior once convergence is attained. We define

K
n.= ),
=1

and hyperparameters of the model are given by

M
Yiju— (o + B+ + E At 850+ 7)
1

t~

L K
My Ny = an,, n,= Y,m,. The full conditionals for the parameters
1 =1 k=1

1 "= . a~—ai .
plalrest) ccexp ——222( ! )24 (=Y )2
2995 o a,
M
auaz —U‘Z'EEE(ﬁ;“+75"+ E /\i,,,z}',f.,+sj(,) +7'1_?/ijkz) P
Ik j m=1 o
OCN( : 2 2 1T g 2 )7
o"+no, o"+n o,
A
1 yij“ a (ai +ﬂ]‘+’y”‘+ E Ai:z,x32l+sj(l) +TI) ﬂl, -—ﬁ
m=1 g 0k + -
p(Blrest) cexp|— =333 ( )2+ ( )2
29945 o o,
M
B — af,z Z Z (o +v,+ A8+ Yiju) o202
! J i m=1 P

o« M

2 2 2 2
o°+nypoy 0" +n,po,
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M
Yiju— (ai +0 vt 2 /\imzﬂz ts;F 7'1)

1 — Y ™ Yok
p('y”‘,lre,st) o< exp _EEE( m=1 )2+( 0 )2
T o o,
’Ym —o, EZ (a; N E])‘m@ﬂ/ 3j(1)+71_y1jk1) 0202
mN( m= > , 5 ,
o’ +n,.0, o’ +ny.o,
A
1 yijkl—(ai +ﬁl\+7zlx+ 2 Aim‘T;'}tl-}—s +Tl) X —A .
p()\,”|7‘65t) ocexp __EEE( ;z-l )2_|_( una 0 )2
A
(Jl.a U,\EEE%M Bt +y tsptn— yuu) aiaQ
oc M
g +U,\$¥2xm ‘o +0A222$m
o
Mo
1 Yim — (ai + B+ v+ E_lAirnx;’il"'sj(l) +7'z) 7
plrjrest)ocexp|— =33 2( - )24 (—=)2
2 kg o o o,
Mo
. Yij— (o + B+ + by N T8y +71) 50
m=1 j D
p(sj(,)lrest) o exp —-—ZE( )24 ()2
o o,
222 Q; +ﬁl. +"/zk+ E )‘mlwzllsll szkl) 0,20_2
OCN( 1+ a E]
o® + Kpo? o®+ Kpo®
np EZEE[?IUM Q; +/Bk+’yzlu + E )‘zmzml_i—s -'_”-l)}2
plo’lrest)oc IG(A+—~, B+ Lk g1 > ),
. u
plotrest) oc IG(AT+—2—,BT+IT ,

Z > 5?(1)
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Ea +a00 5 9
1, —a())2+(a0—a(])2]oc iVa v,
U(l

pla lrest)ocexp[—~—( ,
0 2 o o +o? pl +o’

4}
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