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Abstract

A set of clustering algorithms with proper weight on the formulation of distance
which extend to mixed numeric and multiple binary values is presented. A simple
matching and Jaccard coefficients are used to measure similarity between objects
for multiple binary attributes. Similarities are converted to dissimilarities between 1
th and jth objects. The performance of clustering algorithms with balancing
weight on different similarity measures is demonstrated. Our experiments show
that clustering algorithms with application of proper weight give competitive
recovery level when a set of data with mixed numeric and multiple binary
attributes is clustered.

Keywords : Agglomerative clustering algorithm; mixed-type attribute; association
coefficient.

1. Introduction

Clustering algorithms partition a data set into several disjoint groups such that
objects in the same group are similar to each other according to some
dissimilarity metric. Most clustering algorithms work with numeric data, but there
has been work on clustering categorical data (Huang, 1998; Ordonez, 2003; Chae
and Kim, 2005). Cluster analysis on categorical data is not as clear as on numeric
data. Moreover, clustering on large and high dimensional numeric and categorical
data is not easy to work.

The standard hierarchical clustering methods can handle data with numeric and
categorical values (Everitt, 1993; Jain and Dubes, 1988) using dissimilarity
suggested by Gower (1971), and other dissimilarity measures (Gowda and Diday,
1991, Gower and Legendre, 1986). However, the formulation of distance between i
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th and jth objects on the mixed-type data has not been studied extensively in
clustering with mixed numeric and multiple binary values. Huang (1998) studied &
-means algorithms for clustering large data sets with categorical values,
suggesting the dissimilarity between ith and jth mixed-type objects. In his
formulation, the weight was used to avoid favoring either type of attribute.
However the weight was considered only on the categorical attributes and the
range of the weight values was varied from 0.0 to infinite depending on the data.

This work focuses on clustering a set of data with mixed numeric and multiple
binary values. New formulation of distance based on proper weight that
competitive or superior to Gower (1971) is suggested. Rand’s (1971) C statistic
serves as the measure of the retrieval abilities(or, reproducibility) and the
agreements{or, correspondence) of clustering algorithms based on how they
partition the object space. When € is 1.0, the partition produced by clustering
algorithm is identical to the structure within data treated, that is 0.0 < ¢'< 1.0.
The extensive studies on using the concept of retrieval and agreement of on
Rand’s C statistics could be found in Chae, DuBien and Warde (2006). For the
purpose of study, (0.0, -0.5) is known as single linkage, (0.0, 0.0) as average
linkage, (0.0, 0.5) as complete linkage, (-0.25, 0.0) and (-0.5, 0.0) as representations
of the flexible strategy, and (-0.5, 0.75) as recommendation by DuBien and Warde
(1987), are used.

2. Gower and Suggested Distances

Gower (1966, 1967) has shown that distances satisfying triangle inequality from
similarities can be done only if the matrix of similarities is nonnegative definite.
With the nonnegative definite condition and with the similarity, S;;, between ith

and jth objects, d; = +/1—5, has the properties of distance. Then function as
Euclidean distance as dissimilarity measure between the sth and jth objects was
defined by Gower (1971) as shown below.




Cluster Analysis with Balancing Weight 721

c |.’IJ7_ZL'| r
szﬁﬂ(l”%)‘*' 2 Sijt

=1 I=c+1
- 1_ C r
Zwij1+ 2 Wit
I=1 I=c+1
[4 lel mjll r
=1 1 I=c+1
= {1— -
C+ Z wijl
[=c+1
c lzy— u
il
2 R + Z (wijl_sijl)
_ =1 1 I=c+1
-
c+ 2 Wi
I=c+1

where R, is a range of Ith variable and w;; =1.0 for continuous variables. For
binary variables, s,; =1.0 if z; =x; and s;; =0.0 otherwise, and w;; is typically
1.0 or 0.0 depending on whether or not the comparison is considered valid for the
Ith variables, that is a formulation of Jaccard coefficient.

In Gower's formulation, it was not considered that either one of variables
(continuous or binary) had significant effect on calculating distance obtained from
continuous or discrete variables, assigning equal weight. Thus, clusters from
applying clustering algorithms are easily occupied by one kind of variable types.
To protect or enlarge this phenomena, it is necessary to consider assigning
reasonable weights depending on the characteristic of data treated.

At this point, we define reasonable and comparable dissimilarity measure
between ith and jth objects as

e

- 1 ’xl |

where 7,; is a balancing weight to avoid favoring either type of attributes or a

dominating weight to enlarge favoring one type of attributes, satisfying
0.0<7;<10, R is a range of lth variable in quantitative values. For binary

values, Z s, 4 and Z w;; are varied depending on the similarity measures
l=c+ l=c+1
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preferred by researchers. The weight value of 7,; for each pair of ith and jth

objects will differently effect on the result of clustering process. With this

formulation, A,

;; might be varied as simple matching, Jaccard, and Yule

coefficients. Weights of 0.0 are assigned when variable | is unknown for one or
both variables.

In finding the weight value of 7;; for each pair of ith and jth objects, let pj;
and pf:l/- be any reasonable similarity measures for the quantitative and the multiple
binary variables, respectively. From the equation above, let dfj = 1,d5; + (1= 71;)d;.

Then the 7;; for each pair of ith and jth objects is assigned as

i) o)

C_le___J__, if 1.0< de

|pij| + 1pij| Ipijl

d c

Tij = i3] i)
P10 ——2L—, if 1.0> pd’
ol + 13 |

0.5, if il = lpj,

where —1.0 < pf, pf; 1.0,i=2,3,...,n, j=1,2,..,n—1,i> j.

The rationale behind this formulation is as follows: Euclidean distance is a
measure of dissimilarity and, in order to have equivalence with similarity
measures, it is necessary to divide it by the range. Because the significance of
distance from either one of variables (quantitative or binary) is different, the T 1s

designed to balance these cases by including an option as a weight. Depending on
the pairwise comparison between ¢th and jth objects, the weights are changed
and are used to avoid favoring either type of variables.

In this study, Pearson correlation coefficient, pj;, for the quantitative variable

and product moment correlation coefficient, pj—i—, for the multiple binary variables,

d

are used. However, any reasonable measures might be used instead of pf; and pf;,

if they correspond each other in measuring similarity between the ith and jth
objects within different types of variables.

3. Design of Simulation Study

Suppose a sample of size N is observed with m variables on each data point.
The ~NXm matrix of measurements, say X, might be Xy.,)=X N

= [X Xy Ay X N] where X, represents a m X1 vector of measurement on the
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ith objects. Then a cluster, y,, is simply a nonempty subset of the object space,
and a clustering, ¥ = (y,, ¥s, -, yx), is any partition of the object space, if the

following three conditions hold:

(1) For every y, € Y,y, & @
(2) If y,yy €Y and y, =y, , then y,Ny=a;

3 UhK:l?/h =X

Some notations useful for understanding a cluster, a clustering, an hierarchy and
an agglomerative clustering method can be found in DuBien and Warde (1987).

"

Let Y represent the "true” structure of the N data points with number of
clusters, K, and Y VK] he a certain type of rearrangement of Y with A clusters.
Let Y* denote a clustering that result from applying an agglomerative clustering
algorithm to the N data points with number of clusters, K. Then Rand’'s (1971)
C(Y,Y") is a measure of the “retrieval” ability of the agglomerative clustering
algorithm to the true structure for &, And C(YV%Y’) is a measure of the
"agreement” between ‘a’ and ‘b’ clustering algorithms.

Investigating the “retrieval” ability and "agreement” of clustering algorithms
using Rand’s (1971) C statistic, some of the structural parameters considered in
this study are defined as follows:

1) N, the number of data points in Xy, =(Z,:Z,), where Z, is a NXc¢ matrix

and Z, is a NXd matrix;

2) ¢ and d are the numbers of continuous and binary variables, respectively, with

r=c+d;
3) ny, the size of the kth cluster generated from each population;
4) 4, the distance between mean vectors;
5) R, the correlation matrix of the form,

A B B 1.0 p »p nnn
R=\B A B|, A=|p 1.0 p || B=|nnn}
B B A p p 10 nn

where p=10.5,0.8 and n=-—0.2,0.2.
For convenience, the number of data points in Z, is N=60, the number of

variables is ¢=9, and the number of clusters is k=3 in this study. Then a brief
summary of data structure may be outlined as follows:

Z,~ MVN(u, X)
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where g=1,.,k, i=1,2,..., N. The number of data points are split into k=3
populations of size (n;—n,—ny)=[(20—20—20), (30—20—10)], and the mean
vectors p, g¢g=1,2,3 are constrained by an equilateral triangle spatial
configuration, .

w,=(00 6. 6, 6 00 6 & 4. 0.0),

wy=(6. 0.0 8 6 4. 00005 o)

w,=(6, 6. 00 00 6 6 & 00 6,)
so that the Euclidean distances between mean vectors are §=4,x v/6.0. For this
study we set §=4.0,6.0.

Currently, computer programs which generate "multiple binary” data treat Z, as
a multiple binary random variable are not available. One is not able to randomly
generate a multiple observation in which each variable is an outcome of a
Bernoulli trial. There is no correlation structure associated with the generation.
However, mixed type attributes are considered to have strong relationship in real
set of data. For convenience, a set of multiple binary samples was generated from
a multivariate normal random variable with the reduced correlation matrix of R,
with mean vector u, g=1,2,3 for only six variables among nine. Each variable
for the multiple binary attributes(d=6) was transformed to a Bernoulli random
variable by translating the normal z, value for each variate to "1” if 2. < §—1.0,
"0" otherwise, for g=1; "1” if z, < 4§, "0" otherwise, for g=2; "1" if z, < §+1.0,
"0” otherwise, for ¢g=3. A multiple binary data, Z, was generated from a
multivariate normal random variable with the reduced correlation matrix Ry, .
Finally, a set of mixed-type data, Xy., =(Z, :Z,), with three clusters was
generated.

With this design, the results from clustering algorithms applied to generated
data were observed by investigating the “retrieval” ability and "agreement” of
clustering algorithms wusing Rand’s (1971) (C statisticc. The values of C
representing the recovery of true structure for the six (8, m) clustering algorithms
were generated by the following steps:

1) An object space Xy, of data points was generated;

2) The distance converted using the formula d;; = \/1—_5'“ , where S, is the

similarity between each pair of data points in X, was computed and stored in .

lower triangular matrix order by rows as the vector D, for Gower’s method;

3) The distance dj;, between each pair of data points in Z, was computed and
stored as the vector Djy;

4) The distance converted from association coefficient using the formula .
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dfj = y1—A,;, where A4;; is the similarity between each pair of data points in

Z,, was computed and stored as the vector DQ‘I ;

5) p?j and pj»'j between each pair of data points in Z, and Z;, were computed and
stored as the vectors A.and A, respectively;

6) In favor of balancing, the 7,; for each pair of ith and jth objects is assigned

as,

|05 loi)|
1.0— %, i 1.0 < p—dJ'

|sz| + |pij| Ipijl

0] ¢

Y 1.0—7&5—, if 1.0> pilj

Ipijl + |pij| |p17j|

0.5, i 1oE)= o),

where pf; and p; in the vectors A,and A,, respectively;

7) Then the distance d;

ijr
and stored in lower triangular matrix order by rows as the vector D, for our

between each pair of data points in X, was computed

suggested method;
8) Each of the six clustering algorithms was applied to D, and D, to produce a

clustering, Y

9) Each of the six clustering algorithms was applied to D, and D, to produce
clusterings, Y* for K=3;

10) For each of the clustering, Y“from above steps, C(Y,Y) for retrieval of ‘a’

algorithm, C(Y*, ¥?®) for agreement between ‘a’ algorithm and ‘b’ algorithm
were calculated for the six clustering algorithms.
For each setting of the structural parameters, the above sequence of steps was

replicated 100 times. Then the sample mean and variance of the C statistic, C,
were computed for each of the six agglomerative clustering algorithms.

Consequently, C result is examined and compared to quantify the “retrieval”
ability for each of the clustering algorithms, and the "agreement” between

clustering algorithms based on Gower’s d;; and our d:j calculated from mixed-type

attributes for each setting of the structural parameters.

4. Simulation Results and Discussions

Based on the data from each setting of the various structural parameters, all
results from the comparative study will be discussed with agglomerative clustering
algorithms defined with (3,7) and association coefficients. However, discussion is
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made only on the results using simple matching and Jaccard coefficients since the
retrieval is not good when Yule coefficient is used. The results from the
simulation study are not independent of the fixed structural parameters which
were specified previously. The results based on the settings (n, —n,—ny)

=(20—-20—20) will be discussed since the recovery levels of clustering
algorithms were not significantly different in our simulation study. Since the
results from the single linkage are the worst among the six clustering algorithms
in simulation study, it is excluded from further discussion. For our convenience,
the results using the vectors, D, and D,, are only presented for comparison on
two dissimilarity measures.

In <Table 1>, the results are given as C computed over 100 replications for
each setting of the various structural parameters and for each of the five
agglomerative clustering algorithms using continuous variable only, binary variable
only, and Gower's distance, d;;, with both types of variables, that based on

9 |$1 _:BI .
2—%, Jaccard and simple matching coefficients, respectively. As shown in
=1 !

<Table 1>, the retrieval abilities of clustering algorithms are varied depending on
the choice of variable, (dis)similarity types on the set of data generated with
settings of structural parameters. The recovery levels of clustering algorithms
using Gower’s d,; decrease or increase depending on the choice of clustering
algorithms compare to using only one type of variables.

For the comparison with using Gower’'s d;;, the recovery levels of clustering
algorithms with our suggested distance, dfj are given in the form of C(Y,Y’) for
the cases of Jaccard, and simple matching coefficients in <Table2>. As presented
in <Table 2>, the clustering algorithms, (-.25, .0) and (-.5, .0) that are flexible
strategies, with Jaccard and simple matching coefficients give high recovery levels
compare to the results from other combinations of clustering algorithms and
methods of weight.

<Table 1> The E’(Y, Y% representing retrieval from clustering algorithms

. *
using Gower's d;; and d,;

0 4.0 6.0

p 0.5 0.8 0.5 0.8

Dist Algorith
istanc |Algori m/ _ o 9 -9 P) -2 2 -.2 .2
€

n
(.0,.0) |.6340 | .6847 | .5717 | .6434 | .9433 | .9328 | .9209 | .9035

Conti.-
oM 0.5) | .6394 | 6721 | 5822 | 5978 | 9214 | .8683 | .7972 | .7706

only " 9570) | .0144 | .8944 | .8922 | .8916 | .0984 | .9988 | .9986 | .9980
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(=.5,.0) [.9339 |.9305 | .9341 | .9309 | .9985 | .9981 | .9977 | .9979

(-.5,.75) | .8426 | .8439 | .7990 | .7963 | .9908 | .9880 | .9778 | .9798

Binary | (.0,.0) |.7183 | .7136 | .7098 | .7105 | .7819 | .7480 | .7597 | .7371

only (.0,.5) 1.7182 | .7165 | .7246 | .7086 | .7529 | .7395 | .7458 | .7438

(-.25,.0) | .7630 | .7521 | .7387 | .7272 | .8133 | .7886 | .7716 | .7579

(Simple 5" V77675 | 7523 | .7257 | .7299 | .7977 | .7843 | .7564 | .7441

) (-.5,.75) | .5992 | .6063 | .6135 | .6161 | .6146 | .6308 | .6366 | .6478

Binary | (.0,.0) | .4422 | 4413 | .4534 | 4672 | 4726 | .4433 | .5043 | .5182

only (.0,.5) | .5988 | .5677 | .5785 | .5828 | .6633 | .6081 | .6460 | .6137

(-.25,.0) | .6120 | .5771 | .6005 | .5739 | .7316 | .6940 | .7086 | .6801

UJaccar 50y 7080 | .6651 | .6638 | .6274 | .7372 | .6980 | .7018 | .6712

d) (=.5,.75) | .5964 | .6030 | .6126 | .6153 | .6146 | .6308 | .6366 | .6478

Mixed | (0,00 |.7111 | .6922 | .7143 | .6949 | .7427 | .7330 | .7408 | .7324

Gower (.0,.5) |.7076 | .7036 | .6913 | .6831 | .7289 | .7223 | .7148 | .7054

(=.25,.0) | .7275 | 7279 | .7277 | .7266 | .8210 | .8670 | .7831 | .8157

Uaccar T 5-0y77 8839 | .8612 | .8254 | .7927 | .9933 | .9916 | .9931 | .0928

d) (-.5,.75) | .8182 | .8109 | .7790 | .7823 | .9891 | .9774 | .9759 | .9590

(.0,.0) | .6612 | .6985 | .5982 | .6960 | .8964 | .9661 | .8754 | .9678

Mixed [ (0,5) | .5777 | .6285 | .5661 | .6062 | .6394 | .8079 | .5940 | .7361

(Simple | (-.25,.0) | .9431 | .9606 | .9296 | .9607 | .9993 | .9995 | .9973 | .9992

) (=.5,.0) |.9595 | .9726 | .9615 | .9692 | .9992 | .9998 | .9974 | .9996

(=.5,.75) | .7501 | .8129 | .7013 | .7801 | .9230 | .9852 | .8782 | .9703

(.0,.0) |.6120 | .6870 | .5943 | .6711 | .8781 | .75657 | .8780 | .9536

Mixed [7(0,5) | .5861 | .6150 | .5597 | .6022 | .6388 | .7836 | .6042 | .7311

(Jaccar | (-.25,.0) | .9407 | .9528 | .9183 | .9579 | .9996 | .9991 | .9968 | .9995

d) (=.5,.0) | .9526 | .9645 | .9467 | .9629 | .9984 | .9993 | .9977 | .9991

(=.5,.75) | .7205 | .8003 | .6986 | .7551 | .9230 | .9822 | .8566 | .9640

<Table 2> The C(Y*Y?") representing agreement from clustering algorithms

. *
using Gower's d,; and d;;

0 4.0 6.0

P 0.5 0.8 0.5 0.8

Distanc | Algorith |Algorithm/

€ m

-2 .2 -2 2 -2 .2 -2 .2

1
(.0,.5) 1.9126|.9025|.8873|.8877|.9606(.9519.9642|.9460

(-.25,.0) |.9187].9029|.9127|.8958.8882|.8402|.9147.8789

Mixed (0,.0) (-.5,.0) |.7745|.7677|.8198|.8121|.7377|.7313|.7368|.7277

Gower (=.5,.75) [.7956.7740|.8179|.7870{.7419|.7397|.7459|.7473

(-.25,.0) |.9203].9195|.8954(.8957|.8831.8356|.9048|.8656

(Jaccar
(.0,.5) (-.5,.0) 1.7716|.7822|.8070|.8168|.72441.7210(.7126|.7013

d) (-.5,.75) |.7994|.7898|.8048|.7904 |.7280.7294|.7220|.7238

(-.25,.0)] (-.5,.0) |.8047|.8153/.8515|.8702|.8180.8622|.7805.8127
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.5,.75) |.8168|.8131|.8466|.8257|.8202|.8731|.7905.8279

(-.5,.0)

5
.5,.75) |.8301.8502{.8359|.8375|.9882].9753|.9777|.9596
0,.5) |.5740].5870{.5474|.5714|.6325|.8044|.5890|.7267

(-.25,.0) |.6581(.6901.6035|.6919|.8963|.9657|.8734.9673

(007 175 0) 1.6599].6973].5907 6854 ].8960].96601.8757].9674

Mixed (-.5,.75) |.5864].6313].5490.6229].8462].9517|.7852].9388

(-.25,.0) |.5763].6297|.5663.6061|.6395].8079|.5937|.7358

(Simple| (o 5) [ (-.5.0) |.5766].6292].5655].6048 .6395 |.8078.5938|.7361

) (=.5,.75) |.5693].6127|.5658|.5913|.6331|.8034(.5900.7252

-.5,.0) 1.93441.9566|.9147|.9500.9988.9995,.99671.9989

(-.25,.0) (-.5,.75) |.7374.8055|.6900|.7732|.9228 |.9848|.8767|.9696
(=.5,.0) | (-.5,.75) |.7427|.8140|.6965]|.7775].9226|.9850|.8768 |.9701
(.0,.5) |.5515|.5701|.5546|.5556].6193|.7710|.5979.7189

€0.0) (-.25,.0) |.6081|.6795.5898|.6674|.8780|.9548(.8759|.9532
o (-.5,.0) |.6085)|.6820(.5904|.6611|.8777|.9550|.8772|.9528

Mixed (-.5,.75) |.5419[.6260(.5333|.6913].8248.9393.7636.9199
(Jaccar (-.25,.0) |.5878].6168].5574.6075.6388[.7837 |.6044.7309

(.0,.5) | (-.5,.0) |.5868|.6174|.5597{.6007|.6389|.7835|.6041|.7309

5
d (=.5,.75) 1.5700(.5976.5529(.5894 |.6363].7809|.5965(.7246

(~.95..0) -.5,.0) 1.93441.9458|.9135/.9391.9984|.9989|.9957.9988

(-.5,.75) |.7078].7866|.6898|.7443|.9229.9820,.85491.9640
(-.5,.0) | (-.5,.75) |.7126|.7984|.6952|.7457].9221|.9819|.8548.9631

With the design described, more similar clusterings are retrieved by applying
clustering algorithms when d;- with methods of weight is used. The values of C
from the clustering algorithms show essential differences depending on the choice
of distance measures and methods of weight between the ¢th and jth objects.
This implies that the use of d;j has an effect on the recovery of the true clusters

in the data from mixed-type attributes.

5. Application to Real Data and Discussion

The use of different distances prior to applying the agglomerative clustering
algorithm are investigated on the financial performance data(Affi and Clark, 1990).
For convenience, the 25 companies with 7 variables was used as the data set with
three clusters that identified by different kinds. Details on 7 variables might be
found in Affi and Clark (1990). To obtain a set of mixed data, the correlation
matrix was calculated and principal component analysis was applied. Then it was
found that 3 variables ROR5(percent rate of return on total capital), NPMIl(percent
net profit margin) and PAYOUTRI1(annual dividened divided by the 12-months
earnings per share) were different from the other four variables. At this point,
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ROR5 and PAYOUTRI1 were transformed to binary variables ‘1’ if the values of
each variable are less than the medians of each variables; ‘0’, otherwise. And
NPM1 was transformed to binary variables ‘1’ if the values of each variable are
larger than the medians of each variables; '0’, otherwise.

For each of companies, the sizes of clusters to which it belongs are (14-5-6) in
the Chemical, Health, and Supermarket with 25 companies. Hence the clusters are
identified by the six agglomerative clustering algorithms using Gower’s distance,
d

jth companies. For comparison, the recovery levels of the six clustering

and our suggested distance, d;., based on Jaccard coefficients between ith and

ijs ijr
algorithms on the data with continuous variables originally given by Affl and
Clark (1990} are presented in the following <Tables 3-4>.

As shown in <Table 3>, the recovery level of clustering algorithms on the
“'company defined clusters’’ is increased or decreased by using our suggested
distance depending on association coefficients. When the results of using simple
matching coefficient are considered, the recovery levels of clustering algorithms,
complete linkage, (.0, 5), and (-5 .75) are high with d:j, while the recovery
levels of average linkage-(.0, .0), and one of flexible strategies—(-.25, .0) are high
with d;;. If simple matching coefficient with d; is used, the results are better than
Jaccard coefficient with Gower's d,; except for average linkage-(.0, 0). Among
the five clustering algorithms, a clustering algorithm suggested by DuBien and
Warde (1979) gives great performance on using simple matching and Jaccard
coefficients with our suggested distance, d.., if the clusters identified by Affi and

Clark (1990) are well defined.

1])

<Table 3> The C(Y,Y?" values representing retrieval from applying clustering
algorithms on the data from Affi and Clark (1990)

Gower’s d;; Suggested d;;
Algorithm/ac Jaccard Simple Jaccard
(.0,.0) .6800 .5900 .5900
(.0,5) .5b33 .9367 .7300
(-.25,0) .6800 7200 .5900
(-5,0) 6267 7200 .6967
(-5,75) .b233 .9367 .9367

In <Table 4>, the agreements of the clusterings from the six -clustering
algorithms are different for the cases using two distances, d;; and dfj. By using

those agreements among clusterings, a natural basis for organizing companies
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depending on their financial performance might be obtained depending on the
characteristic of data. In recovering the clusters that identified by Affi and Clark

(1990), the reproducibility of clusters using d?j are better than using d;; if simple

matching coefficient is used.

The highest recovery levels in <Table 3> were given by using complete
linkage, (.0, 5), and (-5, .75) with simple matching coefficient. This implies that
two algorithms reproduce the clusters defined on the data more closely than the
other algorithms. Further, the results from two clustering algorithms agree
perfectly since the agreement is 1.0, as presented in <Table 4>.

<Table 4> The C(Y*Y?") values representing agreement between clustering
algorithms on the data from Affi and Clark (1990)

Gower's d;; Suggested d;;

Algorithm |Algorithm/ac Jaccard Simple Jaccard
(.0,.0) (.0,.5) .7400 6267 1767
(-.25,0) 1.000 7767 1.000

(-5,0) .7000 1767 7867

(-5,75) .5633 6267 .6267

(.0,5) (-.25.0) .7400 7500 7767
(-.5,.0) 7400 .7500 .8300

(-5,75) 7633 1.000 .7500

(-.25,0) (-5,0) .7000 1.000 7867
(-.5,75) .5633 .7500 6267

(-5,0) (-5,75) .7633 7500 .6800

6. Conclusion

This work focuses on clustering mixed numeric and muitiple binary values. The
dissimilarity measures between ith and jth objects as d; is suggested instead of
d,L].
avoid favoring either type of attributes, satisfying 0.0 < 7,; < 1.0. For binary

In calculating the dissimilarity, 7, is a weight to balance the two parts to

ij

values, similarity measures, A,;, are varied depending on the association
coefficients defined by researchers. The weight value of 7,; for ith and jth objects
will differently effect on the result of clustering process.

The results of applying clustering algorithms on d:j and d;; were compared. As
shown in the results from simulations wi_th mixed-type data sets, the retrieval
ability of the clustering algorithms was significantly improved using d:j using

Jaccard coefficient. Then simple matching coefficient instead of Jaccard coefficient.
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was used to calculating the distance d;- in comparison with Gower’s distance, d,;.
by using the mixed data generated from Affi and Clark (1990). A clustering
algorithm, (-5, .75), suggested by DuBien and Warde (1979) gives great per
~-formance on using Jaccard and simple matching coefficients with our suggested

distance, d;-.

In the concept of agreements among several different clusterings, we might have
more confidence in identifying the clusters using measures of distance d;,- instead
of d;;. Further, the highest recovery levels were given by using average linkage

and (-.5, .75), implying that two algorithms reproduce the clusters defined on the
data more closely than the other algorithms.
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