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Estimation in Group Testing
when a Dilution Effect existsl

Sehyug Kwon?2)

Abstract

In group testing, the test unit consists of a group of individuals and each group
is tested to classify units from a population as infected or non-infected or estimate
the infection rate. If the test group is infected, one or more individuals in the
group are presumed to be infected. It is assumed in group testing that classifi
-cation of group as positive or negative is without error. But, the possibility of
false negatives as a result of dilution effects happens often in practice, specially in
many clinical researches. In this paper, dilution effect models in group testing are
discussed and estimation methods of infection rate are proposed when a dilution
effect exists.
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1. Introduction

In group testing, k> 1 individuals from a population are combined into a test
unit and a single test is run on the pooled sample. If the pooled sample tests
non-infected, all k individuals are considered to be non-infected. When the pooled
sample tests infected, at least one individual in the sample is presumed to be
infected. When the infection rate is small, group testing has been shown to be
more efficient than one-at-a-time testing (k=1) not only in classifying
individuals as infected or not in the sense of the expected number of tests to
identify all units (Dorfman, 1943) but also in estimating the population infection
rate in the sense of minimizing the mean squared error of the maximum likelithood
estimator (Thompson, 1962; Swallow, 1985).

In the most of approaches to estimate the infection rate, one of the underlying
assumptions is that there is no false positive and/or negative in testing the pooled
group. False positive makes us to classify incorrectly a non-infected group as
infective, which is a rare event and less of interest in practice. False negative
(dilution effect) leads us to fail to identify infected individuals even if there is
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some infected individuals in the pooled group. When a dilution effect exists, the
MLE is computed by the smaller value and all individuals in the group will be
free to go from further classification even if some are infected by a serious
disease.

The studies to estimate prevalence of HIV-1 seropositivity have widely used
group testing (Gastwirth and Hammick, 1989; Kline et al., 1989; Litvak et al,
1994; Tu et al., 1995). For screening HIV infected individuals, it had been shown
that false positives or false negatives are negligible when a group size of up to 15
is used (Emmanuel et al, 1988; Cahoon-Young et al, 1989; Kline et al., 1989;
Monzon et al, 1992). But, the estimation problem has been rarely studied when
dilution effects exist, which happens often in practice. Chen and Swallow (1995)
showed that group testing is still efficient even in the presence of a dilution effect
when the infection rate is small. Hung and Swallow (1999) proposed two dilution
effect models and discussed them by examining the behavior of MSE (Mean
Squared Error) and bias, but did not cover an estimation procedure.

Retesting individuals from the infected groups is not worthwhile in estimating
the infection rate, for it would only negligibly reduce the mean squared error of
the estimator (Chen and Swallow, 1990). But, when a dilution effect exist, a
retesting scheme is needed to estimate two parameters, the infection rate and the
dilution effect. Chen and Swallow (1990) also showed that halving procedures are
nearly optimal and convenient.

In this paper, dilution effect models are discussed and approaches to estimate
the infection rate in the presence of dilution effects are proposed. Section 2
describes the usual model of group testing and summarizes two dilution effect
models proposed by Hung and Swallow (1999). In section 3, modified dilution
effect models for estimations is suggested and estimation methods are proposed
and discussed. Conclusions and further discussions are summarized in section 4.

2. Usual Group Testing Model and Dilution Effect Models

Suppose that p is the population infection rate, n is the number of testing

groups, and k is the group size. Let D= Ezi be the total number of infected
i=1

groups from n testing groups, where z; is the test result of ith group with z;
being 1 (infected) or 0 (non-infected). In the usual group testing model, D is
distributed as Binomial (n,1—(1—p)*) with the following assumptions: (1)The
individuals in the population are independently and identically distributed as
Bernoulli (p), (2)The same group size k is used for each n groups and total
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number of individuals in group testing is equal to nk, and (3)There is no false
negative and false positive. The MLE of the infection rate is obtained as

p=1-(1-D/n)"*. (1)
By Jensen’s inequality, E(;B) > p for k> 1. Therefore, the MLE in the usual group
testing model overestimates the population infection rate p.

The optimal group size has to be known before the group testing experiment.
The choice of the group size to minimize the MSE of 13 has been mostly
recommended and widely used (Thompson 1962, Swallow, 1985). Unfortunately,
since the optimal group size is a function of the unknown p, the prior guess on p
is still needed to choose the optimal group size. If a bound for the true value of p
from preliminary data or other considerations is available, which is realistic in
practice, the upper bound of it has been suggested in choosing the optimal group
size. Taking the lower bound causes us to use too large a value of k, which

increases the bias of p and inflate its MSE (Swallow, 1985).
When dilution effects (false negatives) exist, the test fails to detect the infection
of a test group even though one or more infected individuals in the group are
present. False positives make us to classify incorrectly a non-infected group as
infective, which is less common in practice than false negatives. False negatives
make us to underestimate the true infection rate p, which may offset the
overestimation property of group testing somewhat. In the classification, all
individuals in the group by dilution effects is free to go from further classification
even if it is infected by a serious disease. Classification problems in a dilution
effect have been studied somewhat in the sense of obtaining the group size which
makes the dilution effect negligible, but estimation problems in a dilution effect

have not been studied widely, specially for estimating the infection rate.
Let m,; be the number of infected individuals in the ith group. Then when a
dilution effect exists, the probability of z, being infected can be written

Plz;=1)=Plz,=1,m; 2 0)
k
= ZP(:I:,,» =1lm, =j)P(m, =j).

i=1

()

Hung and Swallow (1999) proposed the following two dilution effect models:

P(xi=1|m7‘=j)=—(—k_—:‘—7‘.zm 3)

and

4)

Plz,=1lm,=4)=1, | +—— ,j I,
’ b RN CRRAES VI PR N

In model (3), each non-infected individual contributes a specific dilution factor,
f < 1. For f=0, there is no false negative effect. When f > 0, the probability of

1
<71—)
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a false negative in the ith group increases with the number of non-infected units
(k—j). They considered a threshold in model (4), where I represents the indicator
function. For (j/k) = (1/f,), no dilution effect exists. When the proportion of

infected individuals in the ith group j/k is less than 1/f;, the distribution of the
probability of the infected group being diluted exponentially decays against j/k
with coefficient f,. They discussed the proposed dilution effect models in the
sense of MSEs with the various p, but did not discussed an estimation approach
to estimate the infection rate. In this paper, two modified dilution effect models
are proposed based on Hung and Swallow’s models (1999) and estimation methods
of the population infection rate are discussed.

3. Modified dilution effect models and Estimations

As described in equation (2), since the probability of the test result of ith group
being infected is Pz, =1)= ), Pz, =1|m; = j)P(m, = j), the distribution of the
number of infected groups from n test groups is

&
D ~ Binomial(n, ¥, P(z; = 1lm; = j)P(m, = 7)). 5)

Jj=1
When no dilution effect exists, P(z;=1lm;=j)=1 for > 1 and the proportion
in equation (5) reduced to 1-— (1——p)k which is the same as in the usual group
testing model. When a dilution effect exists, the proportion is a function of the

infection rate p and a dilution effect f.
With model (3), the MLE of the infection rate can be obtained by solving

k j ) wei D

—d B\ =p)i = 2
P2 e A i ©
Equation (6) seems too tedious to get solutions for (p,f) by mathematical
expansions. Therefore, for j> 1, a modified dilution effect model 1— (k—j)f is
proposed in this paper without a loss of the Hung and Swallow’s (1999) basic
concept in their first dilution effect model, where the value of f differs and
f < 1/(k—j) satisfying the probability property of probability being greater. Model
(3) is a logarithmically increasing function of j, while the proposed dilution model
in this paper is a linear increasing function of j. Now, Equation (6) can be

written as
1—kf(1‘13)—(1—k/;)(1—13)"=g. 7

No dilution effect, f=0 makes equation (7) the usual group testing equation and
gives the MLE as equation (1). When a dilution effect exists, two parameters
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(p, f) have to be estimated with one equation. For having one more equation, it is
assumed that retesting is feasible, but it would be done only once. When retesting
runs, the only individuals of non-infected groups should be retested and the
smaller group size have to used than the original group size k to detect the
dilution effect. According to retesting scheme, classification procedures in group
testing may be divided into non-Dorfman procedures which test the units of an
infected group one-by-one and Dorfman procedures which divide infected groups
into subgroups for retesting. Halving procedures, which repeatedly subdivide
unclassified groups into two equal size groups, are shown to be nearly optimal
and convenient (Chen and Swallow, 1990). Thus in retesting experiment, the
number of test groups is equal to 2(n— D) and the group size k, is k/2. Let D,
be the number of infected groups in retesting. The following equation can be
obtained in the retesting experiment, similar to equation (7):

1_’“2]?(1_1;)—(1_k2f)(1_13)k2=Tan_f)‘)‘-
Thus the estimators for (p,f) can be obtained by solving equation (7) and
equation (8) simultaneously. From equation (7), the following expression can be

(8)

obtained:
f= (I—AD/H)—(l—AZB)k .
k1-p)1—-(1-p)*")
Now, the following equation can be obtained to compute the estimator p:
ok _
1= gy = =P bt O a3 a0
The estimator for the infection rate f) can be obtained from equation (10) by the

9

numerical substitution method. The following example shows how one can obtain

the estimators of p when a dilution effect exist and the dilution effect model is
assumed to be 1—(k—j)f. Let the population units be iid as Bernoulli(p = 0.05)
where p is the infection rate and the number of testing groups n be 30. Then the
optimal group size k is 20 from Swallow’s table (1985). The number of infected
groups was 19 from a simulated data using RANTBL function of SAS with
seed=1. Suppose a dilution effect exists and two infected groups out of 19 infected
groups tests non-infected. Then D is 17. The 13 non-infected groups would be
tested in the retesting experiment, and divided into 26 test groups with the
halving procedure. If 9 groups out of 26 groups test infected in the retesting, the
estimator p is 0.042 from equation (10).

Since parameter f is the power of exponential form in model (4) which was
proposed by Hung and Swallow (1999), the mathematical expansion seems very
unlikely. Three parameters in model (4) make retesting on non-infected groups of



792 Sehyug Kwon

the previous testing run twice. Therefore, model (4) is not a feasible model for
estimating p when a dilution effect exists. Instead, a dilution effect model with a
threshold is proposed here in simpler form. The existence of dilution effects
P(z;=1lm;=j) depends on the volume of k, j/k, or (k—j). It seems likely in
the real fields that we know the maximum value k& of which does not make any
dilution effect. For example, in the screening for HIV, it has been shown that the
maximum value is 15 as mentioned (Emmanuel et al., 1988; Cahoon-Young et al.,
1989; Kline et al, 1983; Monzon et al., 1992). Let k; be the maximum group size

of which does not make any dilution effect. Then a dilution effect model can be
suggested as follows, where a dilution effect is a function of &£ and j:
Plz;=1lm;=j)= L. < 1) +[(k>lq,)g(kaj) forj=1. (1D

Two testing procedures, the usual group testing (the first stage of testing
experiment) and retesting experiment can be used to estimate the infection rate
and the dilution effect as before. Notations are the same as the previous. The
probability of z; being 0 (not infected) can be written

Plz;=0)=Plr,=0,m;=0)+ Plz; =0,m, = 1) (12)

= (1-p)* + Plz; = 0)P(m, = 1lz,= 0).

The second term in equation (12), Pr(z; =0,m; = 1) can be considered a dilution
effect if it exists. The existence of dilution effects depends on the volume of (j/k)
where j is the number of defective units in the tested group. If the optimal group
size at the first stage of testing experiment k is not greater than k;, there is no
dilution effect and the usual group testing can be applied to estimate the infection
rate. When k 1is greater than 2k, the group size at the first stage is
recommended to be 2k, instead of the optimal group size from Swallow’s table
(1985) to assure that there is no dilution effect at the second stage if halving
retesting procedure is used. If k¥ is an odd number, {k—1) should be the group
size at the first stage to use halving retesting procedure, for the smaller k&
reduces the MSE of the estimator.

When the optimal group size k at the first stage is in [k, +1,2k,] and even
number, halving procedures in retesting can be applied to the groups which are
tested as non-infected at the first stage for estimating the dilution effect. In
retesting, the non-infected group at the first stage should be divided into two
testing groups with the size of k/2. The number of tested groups in retesting is
2(n— D). When the number of infected groups in resting D, is 0, there is no
dilution effect and equation (12) reduces to the usual group testing model, which
means that we gain nothing by retesting. The last term in equation (12)
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Pr(m; = 1lz;=0) can be considered as a dilution effect and estimated by

estimating the infection rate in retesting. Therefore, the estimator for the infection
rate can be obtained as

D, 1/k

p=1-((1- ;)(m)) . 13
For example, suppose the number of infected groups at the first stage D is 10

with the same population assumption as the previous example. The smaller value

of D is the more resonable outcome for the last dilution effect model (11). If 19

groups out of 40 test groups test infected in the retesting experiment with the

halving procedure, the estimator p is 0.056 from equation (13).

4. Conclusion and Discussion

The group testing is more efficient than one-by-one testing in estimating
problem and classification problem when the test outcomes of units are
dichotomous and the probability of being success is small. In classical approaches
to estimate the infection rate, no false negative (dilution effect) is assumed, but
dilution problem happens often in many practical area. Hung and Swallow (1999)
discussed dilution effects and the selection of group size by two proposed dilution
effect models, but did not touch how to estimate the infection rate. In this paper,
two modified dilution effect models are proposed and estimation methods for the
population infection rate are discussed when a dilution effect exists. And examples

are given to show how to get the estimator p with two modified dilution effect
models. Halving retesting procedure is used for the retesting scheme. We can
extend the last proposed model to the case that the group size of the first stage
is greater two times of the maximum value of defected units in a group that does
not make any dilution effect somewhat with more than two retestings.
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