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A REFINEMENT OF GRUSS TYPE
INEQUALITY FOR THE BOCHNER INTEGRAL
OF VECTOR-VALUED FUNCTIONS IN
HILBERT SPACES AND APPLICATIONS

CONSTANTIN BUSE, PIETRO CERONE,
SEVER SILVESTRU DRAGOMIR, AND JOHN ROUMELIOTIS

ABSTRACT. A refinement of Griiss type inequality for the Bochner
integral of vector-valued functions in real or complex Hilbert spaces
is given. Related results are obtained. Application for finite Fourier
transforms of vector-valued functions and some particular inequal-
ities are provided.

1. Introduction

In 1934, G. Griiss [5] showed that
1
(11) T (f,0)] < 3 (M —m) (N = n),
provided m, M, n, N are real numbers with the property
—co<m< f<M<oo, —-co<n<g<N<oo ae. on [a,b
and T (f, g) is the Cebysev functional

b b b
o [ Foawa - [ r@a = [gwa

The constant % is best possible in (1.1) in the sense that it cannot be
replaced by a smaller one.

An extension of this classical result to real or complex inner product
spaces has been obtained by S. S. Dragomir in [2]:

T(f,9):=
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THEOREM 1. Let (H;(-,-)) be an inner product space over the real
or complex number field K and e € H, e = 1. If ¢,¢,7,T € R and
z,y € H are such that

(1.2) Re (¢e — 7,7 — pe) > 0 and Re(Te -1,y —~e) > 0
or, equivalently (see [4])

13) o= 25t <310t and o~ < Jim-,
then

(1.4) 2,9} = (z,) (e,)] < 716~ ¢l D~

The constant } is best possible in (1.4).

A further extension for Bochner integrals of vector-valued functions
in real or complex Hilbert spaces was obtained by S. S. Dragomir in [3].

‘THEOREM 2. Let (H;(-,-)) be a real or complex Hilbert space, 0 C
R™ be a Lebesgue measurable set and p : 2 — [0,00) a Lebesgue mea-
surable function with [, p(s)ds = 1. We denote by Ls,(Q, H) the

set of all Bochner measurable functions f on Q such that | f||3 p =

Jap ()L f (s) |? ds < co. If f, g belong to Lo, (2, H) and there exist the
vectors x, X,y,Y € H such that

(1.5) /Qp(t)Re<X—f(t),f(t)—w>dt20,
/Qp<t>Re<Y—g(t>,g<t>—y>dtzo,

then we have the inequality

(16) )/Qp(t) <f(t>,g<t>>dt—</Qp<t>f<t>dt,/gp<t>g(t>dt>)

HESE

The constant i is sharp in the sense mentioned above.

REMARK 1. We must state that the functions under the integrals
(1.5) and (1.6) are Bochner integrable on Q since they are Bochner
measurable and we can state the following obvious results

p () [Re(X — f(t), f (t) — z)|
p @) (X = f (), f(t)—a)l
PO IF I+ X1+ liz) p &) I f ) + KX, )] o (£)

IA A
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for a.e. t € Q;

l@mwwuw&sWhp
and

prKﬂﬂg@HﬁSWhﬂwm-

REMARK 2. A practical sufficient condition for (1.5) to hold is
Re(X - f(t),f(t)—2) 20, Re(Y —g(t),g(t)—y) >0
or, equivalently

X—I-x
r0-

for a.e. t € Q.

1 Y
<lix—qf and W@) *yH

<SIY -3,

An interesting particular inequality that has not been mentioned in
[3] can be obtained by considering H = C, (z,y) := 2z -gF and g = f, to

give
Ay@w%@@—(ﬁp@f@mQQS
provided

(1.8) /Qp(s) Re [(4 - () (75 - 7) | ds > 0
or, sufficiently,

(1.9) Re [(A-f(s)) (m—a)] >0

for a.e. s € €L
Note that the alternative result

110) 0= [ oI ds—| [ p(s)f()ds

provided (1.8) or (1.9) hold, has been stated in [3].

The main aim of this paper is to obtain an improvement of the Griiss
inequality (1.6) and establish some Griiss type results in providing upper
bounds for the quantities

[janﬂwga»ﬁ-<Apmfam54pmgmﬁﬂ

(1.7 HIE
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and

/Qp(t)a(t)f(t)dt—/Qp(t)a(t)dt-/Qp(t)f(t)dt“,

under various assumptions for p, a € Ly , (2, K) and f € Ly, (92, H).

Applications in approximating the finite Fourier transform of vector-
valued functions in Hilbert spaces are provided. Inequalities for some
particular vector-valued functions are given as well.

2. Some inequalities of Griiss type

The following lemma holds.

LEMMA 1. Assume that f € Lo, (2, H) and there exist the vectors
z,X € H such that

(2.1) | p@Re(xX = 1().5 () =)t >0
or, equivalently,

2 1
dt< =X —z|.

X+z
2

(22) [ o0 ”f (t) -

Then we have the inequality

2

23 o< [pOIOFa- H [r0s@a

< IIX—:E||2~/Qp(t)Re<X—f(t),f(t)—:v>dt

1
4
1
< 71X - =),

The constant % in the second and third inequalities cannot be replaced
by a smaller quantity.

Proof. Since, for any y,z, X € H

2
1
- 31X = ol =Re(y - X,y - a),

b5
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hence

/ H)Re (X — (1), f (t) — z)dt

L2

SR HE SR HOEE
X 2

SE L Rl 0] O

showing that, indeed, (2.1) and (2.2) are equivalent.
Define (see also [3])

L= <X—/Qp(t)f(t)dt,/ﬂp(t)f(t)dt—-'r>

I :=/Qp(t><x—f(t>,f(t>—x>dt.

and

Then, obviously
2

k= /Q () 1(X, F (1)) + (F (1), 2] dt — (X, ) —
and

Izz/p(t) [(X,f(t)>+<f(t),fv>]dt—<X,r>—/p(t) IF @)1* at.
Q Q

Consequently,

/ p(t) f () dt
Q

2

(24) L-IL= /Q o (&) 1IF W) dt - /Q o (t) £ (t) dt

Taking the real value in (2.4), we can state the following identity as well

3
25) IRCICIRE H [r0i@a 2
=Re<X—/Qp(t)f(t)dt,/gp(t)f(t)dt—x>

—/Qp(t)Re<X—f(t),f(t)—w>dt

that is of interest in itself.
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Using the well known inequality in inner product spaces

a2

with equality if and only if z = y, we may state that

Re<X—/Qp(t)f(t)dt Lo®s@i-z) < 1x afp

and by the identity (2.5), we deduce the second inequality in (2.3).
The third inequality follows by the assumption (2.1).
Now, assume that (2.3) holds with the constants C, D > 0. That is,

en o< [0 IIf(t)IIZdt—H [otrsaa 2

sC||X—w||2—/p(t)Re<X—f(t),f(t)—x>dt
Q
<D|X - of?.

If we choose 2 = [a,b] CR, H =R, f:][a,b] — R,
-1 if t€ [a, a+b]

f6) =
1 if te (“""b b]

then for X =1,z = —1 and p : [a,b] = R, p(t) = 1, ¢t € [a,}] the
condition (2.1) holds and by (2.7) we deduce

1<4C<4D

giving C' > }1 and D > %, and the lemma is proved. g

The following refinement of the Griss inequality holds.

THEOREM 3. Assume that f,g € Ly, (Q, H) and there exist the
vectors , X,y,Y € H such that

(2.8) /Qp(t)Re<X—f(t),f(t)—w>dt20,
/Qp<t)Re<Y—g<t>,g<t>—y>dtzo
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or, equivalently,

(2.9) Lo ”f(t) _Xa)

f Hga) Yy

Then we have the inequality

(2.10) [/ ol >>dt—</Qp<t>f(t)dt,/ﬂpa)g(t)dtﬂ

< X =alllY —ull = | [ pORe (X~ 7 0), (0 -

1

2 1 )
dt < 2 IIY —y[”.

1/2
></p(t)Re<Y—g<t>,g<t>—y>dt]
Q

< 7 IX =z Y =yl

=

The constant % in both inequalities is sharp in the sense that it cannot
be replaced by a smaller quantity.

Proof. We start with the following Korkine type identity (see also [3])

(241 /Qp(t) f (t)’g(t)>dt—</ﬂp(t)f(t) dt,/ﬂp(t)g(t)dt>
B %/Q/Qf(t)p(s) (F@) —f(s),9(t) = g(s)) dtds.

Taking the modulus and using the Schwarz inequality in inner product
spaces, we have

212 | [ o0 ))dt_</ﬂp(t)f(t)dt,/ﬂ,)@)g(t)dtﬂ

-2// s)ILF @) = f(s)llllg () — g (s)]l dids.

Using the Cauchy-Bunyakovski-Schwarz inequality for double integrals,
we have :

1) 5[ [ o@eire -1 - g das
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< (3 [r@rour0 (s)||2dtds)21
«(3 /[ / o () = g )P s )

Since a simple computation shows that

(2.14) / [ r@p@)f @)~ () drds

017 0] dt—”/ﬂp(t)f(t)dt 2
and

(2.15) / | p@pe)lo ) ()| deas
(6) g (&) de H /Q o090t

then by (2.11)-(2.15), we deduce

(2.16)

< (/qu) £ (&)1 dt ”/Qp(tmt)dt 2)

x (/Qp(t) ||g(t)|l2dt—H/Qp(t)g(t)dt 2) _
(2.17)

Using Lemma 1, we may déduce
1
M2 (FIX =l = [ pORe(X~ 10,5 0)-)at)

/Qp(t)<f(t),g(t)>dt—</Qp(t)f(t)dt,/np(t)g(t)dt>

2

< (3 IV =3l = [ pORety ~9(),00) - at) = I

By the elementary inequality

(m? —n?) (p? — ¢%) < (mp —ng)®, m,n,p,qER,
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we may state that
(2.18)

V< (X =alllY =ull = | [ pORe(x 0.1 ) =)

1\ 2
X /Qp(t)Re<Y—g(t),g(t)—y>dt] )
and thus by (2.16)-(2.18) we can conclude that
/Qp(t)<f(t),g(t)>dt—</Qp(t)f(t)dt,/ﬂp(t)g(t)dt>l
< [ =allly =l = | [ pORe(xX = 7). £ (1) =)

(2.19)

1
2
></Qp@)ReW—g(t),g(t)—y>dt]
and since, by Lemma 1,

[ [ pORe(x = 0).5 )=z

[ p@Re(y —g6).0(0)— )t

1
< ZIX =2y -yl

hence from (2.19) we deduce (2.10).
The sharpness of the constant % follows by Lemma 1, and we omit
the details. O

REMARK 3. The inequality (2.10) is obviously a refinement of (1.6),
which has been obtained in [3].

The following result of Griiss type also holds.

THEOREM 4. Assume thata € Ly, (Q,H), f € Ly, (2, H) and there .
exist the scalars a, A € K (K = C,R) and the vectors z, X € H such that

(2.20) /Qp(t) Re [(A —a(t) (a_@ - a-)] dt >0 and
/Qp(t)Re<X—f(t),f(t) —aydt >0



920 C. Buge, P. Cerone, S. S. Dragomir, and J. Roumeliotis

or, equivalently,

(2.21) /Q o (t)
mﬂpm—

A+al?

1 2
dt<>|A—al?,
<la-

a(t) —

X +zl?

1
dt < Z1|X—ac||2.

Then we have the inequality

(2.22)

prawf@ﬂ~lf@MﬁM#Ap@f@ﬁH
5A—awx?xn—(prnmﬁA—au»GRB—aﬂdt

IA

XprRMX—Hﬂjw—@ﬁyﬂ

1A= allx —a].

IN

The constant i in both inequalities is sharp in the sense that it cannot
be replaced by a smaller quantity.

" Proof. We observe that the following Korkine type identity holds

/ wanUﬁ—A anﬁléﬂﬂﬂﬂﬁ
//” t) —a(s)) (f(¢) — f(s))dtds.

Using a similar approach to the one in Theorem 3, we have successively

(2.23) “/ dt—/ﬂ ()a(t)dt-/ﬂp(t)f(t)dt”
‘// a()|1f () = f (5)] deds
s[iéépmmgmw—a@ﬁmm

I/\
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<3/ [e0se)s0 - (s)||2dtds]%
= Vﬂp(t)ta(t)ﬁdt—l/ﬂp(t)a t dtT
2}%

x [/ﬂpa) Hf(t)||2dt—“/ﬂp(t)f(t)dt
G 1A —af? - /Qp(t)Re [(A—a(t)) (a_(t)—a)] dt)%

< (0% ol = [ pORex =70 50 -a)ar)

EIA_al X — 2| - (/Qp(t)Re [(A——oc(t)) (m—ﬁ)] dt)%

9 ( [roRetx-70.50 - dt)

7AN

IA

N

fa=allx-al- ([ pORe [(A-a ) (a@-7)] as

< [OR(X = 10,1 0)-2) it
Q

and the first inequality in (2.22) is proved.
The second inequality and the sharpness of the constant 1 3 are obvious
and we omit the details. O

3. Pre-Griiss type inequalities

The following result provides an inequality of pre-Griiss type that
may be useful in applications when one of the factors is known and
some bounds for the second factor are provided.

THEOREM 5. Assume that f,g € Lo, (2, H) and there exist the
vectors =, X € H such that either (2.1) or (2.2) holds true. Then we
have the inequality:

sy |[ o0 <f(t>,g(t>>dt—</Qp<t>f<t>dt,/ﬂp<t>g<t>dt>]
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L
2

< (%HX—JUI]Z_/Qp(t)Re<X—f(t),f(t)_w>dt)

" (/ﬂpm o= [ p0owa )

o\ b
<2 IX -z (/Qp@)ug(wn?dt— [ r@ata ) .

The proof follows by Lemma 1 and the inequality (2.16) and we omit
the details.

Similarly, we can state the following pre-Griiss inequality related to
the case when our function is scalar.

THEOREM 6. Assume that a € Ly, (2, H), f € Ly, (2, H) and there
exist the vectors ©,X € H such that (2.1) or, equivalently (2.2) holds
true. Then we have the inequality

(3.2) H/ dt—/Qp(t)a(t)dt-/Qp(t)f(t)dt“

< (ZIIX—:EII2~/p(t)Re<X—f(t),f(t)—w>dt)%

(/ la(t;dt—‘/ o (t) dt )

1 b
<5 IX—al </Qp(t)la(t)l2dt— /mea(t)dt) .

The proof follows by Lemma 1 and the inequality (2.23) and we omit
the details.

REMARK 4. Assume that Q = [a,b] C R and p(t) = 3*-. Then, from
(3.2) we get

(3.3) “bia Qa(t)f(t)dt—bia/ﬂa(t)d .bi

()|

< |3 -l - 52 [Re(x - ) —xdt]

X [bia/Q|a(t)]2dt—1bia/Q (t)dt
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provided a € L3 ([a,b],K), f € La([a,b], H) and

(3.4) /QRe(X—f(t),f(t)—ac)dtzo

or, equivalently,

(3.5) /

We observe that, in practical applications the conditions (3.4) and
(3.5) may be replaced with the more convenient sufficient conditions

(3.6) Re(X — f(t),f(t)—x) >0 for ae. t€]|a,b],

or, equivalently,

f)-

_X+a:
2

2 1
f (@) dt < 7 [1X —al|*.

X+zx

1 .
(3.7) < - ||X —z|| forae te€lab].

4. Inequalities for the finite Fourier transform

Let (H;(-,-}) be a real or complex Hilbert space and g : [a,b] —
H be a Bochner integrable function on [a,b]. Define its finite Fourier
transform by

o
(4.1) F(g)(t) ::/ e 2™ g () ds.

We also consider the exponential mean of two complex numbers (see also

6) o

e” —e

if 22w
E (z,w) := Z-w , z,w € C.

exp(w) if z=w
The following result may be stated.

THEOREM 7. Assume that f € Lo ([a,b], H) satisfies either (3.4) or,
equivalently, (3.5). Then we have the inequality

(4.2) Hf(f) (t) — B (~2mita, —2mith) b £ (s)ds
in? [ - 2
Sl = K
<P tyx g

- 2
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for each t € [a,b] (t #0).
Proof. We apply the pre-Griiss inequality (3.3) to get
(4.3)

1 /b 6—27rit3f (8) ds — 1 /b e—27rit8d$ . 1 /bf (8) d
b—a ), ST h—al, b—al, s
1

1 1 b ita12 1 b i HE
< 2mits 2mits .
3 X — | [—b /a [e ’ ds — . /a e ds

However,

b
/ e~ 2mits o (b — a) E (—2mita, —2mith),

a

le—zm'tsl? —1,

b 2mith 2mita
: € — €
/ e27rzts ds ,
a

2mit
and
b 2 b 2
/ e—27ritsds — / e27rztsds
a a
1 2mith|? omith | —2mit omita|2
= 1 [le ™o — 2Re {e e a] + |e*me|
1
=53 [1 —cos[2nt (b~ a)]]
_sin?[nt (b — a)]
B 22
Utilising (4.3), we deduce the desired inequality (4.2). O

REMARK 5. The above inequality (4.2) extends for vector-valued
functions the corresponding result from [6].

From Theorem 5 for @ = [a,b] and p(t) = £, we may deduce
the following inequality that will be utilised in Theorem 8 to point out
another type of inequality for Fourier transforms:

(4.9 ﬁ/ﬂm)g(t»dt—<5f—a/abf<t>dt,ﬁ/:g<t>dt>}
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1
2

< (iux—ww—b—};/:Re<X—f<t>,f<t>—m>dt)

2\ 3
( / lg ()1 dt—”— t) dt )
1
1 1 ) 1 ik
<X —af | — [ dt
< SIX —al [b_a/a lo a2 [are |,
provided (3.4) or (3.5) holds true.
In the following we use the notation (f, g) for the function ¢ : [a, b] —
K, £(t) = (f(t),9(t)), t € [a,b], where f,g € Ly ([a,b], H).
The following result may be stated as well.

THEOREM 8. Let f,h € Lo ([a,b],H). If f satisfies either (3.4) or
equivalently, (3.5), then we have the inequality:

o frumo- (5L o)
<1x —xu[ - [ ds—”~—f

for any t € |a,b], where

} (b—a)’

b
F(h)(t) := / ™5 h (s) ds,
a
is the inverse Fourier transform.

Proof. If we apply the inequality (4.4) to g (s) = €*™#5h (s), t € [a, ],
then we get

b
el R OLIOIES

<_a/f ds,b_ / 2’”'tSh(s)ds>
< Lix -xn[ - [ ds—||T/ 2751 (5) ds T,

which is obviously equivalent to (4.5). O
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5. Inequalities for particular vector-valued functions

Let H be a real or complex Hilbert space and £L(H) be the linear
space of all linear and bounded operators acting on H. The norms of
vectors in H and of operators in L(H) will be denoted by || - ||

1. Choose Q = [0,1], p(t) = 1 and f(t) = €4z for t € ), A being an
invertible bounded linear operator acting on H and z be fixed in
H. Since, for each t € [0,1] one has

llet 2| < efllAll]|z]] < ell4ll]|2]),
then it follows that

etz — SellAlz]] < AAe]] + Sel4le]] < Sell 4l

Let X := 2ell4llz and 2 := —ellz. An application of inequalities
(2.3) gives:

1 1
1) 0< / €4 2|2t — ”/ |
0 0
On the other hand
1
/ ezdt = A7HeA = 1)z,
0

9
< JeMiz

and so in view of (5.1) we get
1
1A A - D2 < / et 2] e
0

9
1A e = DIPHE? + e 212,

IA

and, moreover:
1
- 9
sup / HetAm||2dt < ||A 1(eA _I)H2 + 7 2llAll
llz]|<1J0 4

2. Let Q, p and z be as above. Consider f(t) = e1=)B(B — A)etB
for each ¢t € Q, where A and B belong to L(H). After a simple
calculation, [1], we obtain:

/ f(®) —et] 2.

On the other hand it is clear that ||f(¢)|| < g(t), where
g(t) = 00113 — Al
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Consider here only the case when ||A|| > ||B||. In this case the
map ¢ is non-decreasing and so

IF@OIl < 9(1) = 1B — Allell]|z]]
for all ¢t € §2. The inequality (2.1) holds for
X :=2||B — Al|lel ™z and z := —||B — A]ellAll.
From the inequality (2.3) it then follows that

1
TP = eNelP < [ 116075 — ez
0

1
< ;llle® = e + 91| B — Al P4 2] 2.
In particular, for B =1+ A and ||A]] > ||I + A|| we get:
(€2 + 2e — 3) ||e2||? < 92N 2|2,

or equivalently

Ve? + 2e — 3|e?]] < 3ell4ll.

. Let T = {T'(¢) }+er be a strongly continuous group of linear and
bounded operators acting on a Hilbert space H and let A : D(A4) C
H — H be its infinitesimal generator. We suppose that T is
exponentially stable, that is, there exist the positive constants N
and v such that ||T(t)z|| < Ne “M||z|| for all ¢ € R. Then it
is well-known that A has an inverse in £(H). Consider 2 = R,
p(t) =: ve "l and f(t) := e’MIT(t)z for a fixed z € D(A) and
t € R. An application of the inequality (2.3) for X := 2Nz and
x := — Nz gives the inequality:

o] NZ
0< [ e < 2 el

—00
where the fact that
/oo T(t)zdt = A7'T(t)2|®, =0
has been used. In particular, if A is a real or complex quadratic
n-dimensional matrix and
vo = sup{R(\) : det(M\[, — A) =0} < v <0,
then there exist a positive constant N such that

*° 9N?
vit] || tA]12 <
/_ e"]e™?|]%dt < e
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Here n is a positive integer, I, is the n-dimensional identity matrix
and we can take

N :=sup{e M[|e*"||: teR}.

4. Let 8 = {S(t)}+>0 be a strongly continuous semigroup of linear
and bounded operators acting on a Hilbert space H and let G :
D(G) C H — H be its infinitesimal generator. We suppose that S
is exponentially stable, that is, there exist the positive constants
K and « such that [|[S(t)|] < Ke™® for all ¢ > 0. Then it is
well-known that G has an inverse in £(H). Consider §2 = [0, 00),
p(t) := ae™® and f(t) := e*S(t)z for fixed z € D(G) and t > 0.
An application of the inequality (2.3) for X :=2Kzand z := - Kz
yields: ’

1

0o 9N2
IGalP < 5 [ els@slPa < 1674 + 3oy
0

4a?
5. A densely defined linear operator A on a Hilbert space H is said

to be sectorial if (0, 00) resides in the resolvent set of A and there
exist M > 0 such that

(t+ D||R(t, A)|| < M for all t > 0,
where R(t, A) := (tI — A)~! is the resolvent operator of A.
Consider 2 := [0,00), p(t) = (¢t + 1)72 and f(t) = (¢t +
1)2R(t, A)%z for a fixed 2 € H and every ¢t > 0. In order to find
suitable X and x we remark that:
IFOI < ¢+ D2R(E A)I[R(E, A)zl] < M2[2]].

An application of the inequality (2.3) for X := 2M?z and z :=
—M?2 yields:

JA™12) 2 < / (44 12| R(t, AVt < 1A 4 ) M2,
0

where the identity

o0

/ ” p(t)f(t)dt = —R(t,A)z| = A"z
0 0

was used.
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