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IDENTIFICATION OF CONSTANT PARAMETERS
IN PERTURBED SINE-GORDON EQUATIONS

JUNHONG HA AND SHIN-ICHI NAKAGIRI

ABSTRACT. We study the identification problems of constant pa-
rameters appearing in the perturbed sine-Gordon equation with the
Neumann boundary condition. The existence of optimal parame-
ters is proved, and necessary conditions are established for several
types of observations by utilizing quadratic optimal control theory
due to Lions [13].

1. Introduction

In previous paper [7] we studied the problem of identification of the
parameters «, 3, and & for the system governed by a damped sine-
Gordon equation

&y dy

(1.1) w—kaa—ﬁAyﬁ-'ysmy:&f.

In [7] the existence and necessary conditions of optimal parameters ¢* =
(ar, B*,v*, 0%) are established with a quadratic cost function which does
not include the parameter ¢* = (o, 8%, v*, 0*) explicitly.

Several types of perturbed sine-Gordon equations different from (1.1)
are proposed to describe dynamics of the phase difference in various
Josephson junctions. In Kivshar and Malomed [10] the perturbed equa-
tion ’

2 2 2
X fh

is proposed by taking into account of losses or dissipation due to the
current along a dielective barrier in Josephson junctions. The nonlinear
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perturbed equation

%y 9%y
o2 922
is also proposed by Kivshar and Malomed [9] to determine the inelastic
interaction of a fast kink and weakly bounded breather. A additional
nonlinear perturbation ZiLzl €; sin k;y is possible in (1.3). Further, in
Ghidaglia and Marzocchi [4] the following equation having damping and
amplification perturbed terms

(1.3) +siny = esin 2y

(1.4)

? 0
y — Ay +siny = ¢ z+€2y

a2 0
is considered and they prove that (1.4) has a finite dimensional global
attractor.

Recently in Ramos [15] numerical solutions of a more generalized
perturbed sine-Gordon equation

2 2 2

(1.5) %—gw—y%—smy—elgt +62y+e3s1n2y+64§2 (%)
with homogeneous Neumann boundary conditions are given by utilizing
implicit finite difference method. In [15], he observes some interesting
solutions in according to choosing the perturbation parameters ¢;. How-
ever, it is not given the proof of existence and uniqueness of solutions
in [15] and there is no information on amplitude of constant parameters
€;. It is an important physical problem to identify such parameters.

In this paper we will study identifying physical parameters «a, 3, 7v;, 6,
Ki, v and a source function f in a general perturbed sine-Gordon equa-
tion

0%y 8A
Er) +a BAy+Z’y,smmy+5y~yf

=1

(1.6)

That is, our aim is to extend the results in [7] to the ones for the equation
(1.6) under the homogeneous Neumann boundary condition. We take
as in [7] the framework of variational method due to Dautray and Lions
[3] and Park [8] and set a solution space for the equation (1.6). We will
prove the existence and uniqueness of solutions for (1.6) and solve the
identification problems of (1.6) by utilizing optimal control method by
Lions [13]. We note that the restriction on the space dimensions in [7]
is removed and more general costs including parameter terms explicitly
than those in [7] are considered.
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This paper is composed of three sections. In studying the problems
of identification for (1.6) we need some fundamental results on solu-
tions for (1.6). Hence in Section 2, we explain the existence, uniqueness
and regularity of solutions for (1.6) with Neumann boundary condition.
In Section 3 we solve the problems of identification for (1.6). Finally
we deduce the bang-bang property of optimal parameters via necessary
conditions on optimality.

2. Perturbed sine-Gordon equation

Let 2 be an open bounded set of the n dimensional Euclidean space
R"™ with a piecewise smooth boundary I' = 9Q. Let @ = (0,T) x © and
Y. =(0,T) x I". Let us consider a perturbed sine-Gordon equation

02 oA
(2.1) 8—£—a——y—ﬂAy+;%smmy+5y—f in Q,
where a,3 > 0, 6,7,k € R = (—00,),i = 1,...,L, A is a Lapla-
cian in R™ and f is a given function. The boundary condition is the
homogeneous Neumann condition
Oy
(2.2) % =0 on 3.
The initial value is given by
0
(2.3) y(0,2) = yo(z) in Q and 8—?(

First we introduce two Hilbert spaces H and V by H = L*(Q2) and
V =HYQ), respectively We endow H = L%*(Q) with the inner product
and norm (¢, ¢) = [ ¥( x)dz, [|Y| = (7,[1 )2 Ve, '4/1 e L3(9).
For ¢, € V = HY(Q) we deﬁne (¥, 0) = >0y fQ 6?:.Ldj ¢(m)dm.
The inner product and norm of V = H 1(Q) are defined by

(¥,0)1 = (¥, 8) + (¥,9), ¥l = (v, 9)7*, Vo, 4 € H(Q).

The duality pairing between V and V" is denoted by (-,-). Then the pair
(V,H) is a Gelfand triple space with a notation, V — H = H — V’,
which means that embeddings V C H and H C V' are continuous, dense
and compact. The norm of the dual space V' is denoted by || - ||+-

Now we introduce a bilinear form

24)  alpp) = /Q Vo Vodz = (¢,9), Yo, H(Q).

0,z) =yi(z) in Q.
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The form (2.4) is symmetric, bounded on H(Q) x H'(Q) and coercive
a(d,¢) > ||1ol°> — ||, Y¢ € HY(Q). Then we can define the bounded
operator A € £(V,V’) through (2.4). The operator A is an isomorphism
from V onto V' and it is also considered as a self-adjoint operator in
H = L?(Q) with dense domain D(A) in V and in H, D(A) = {¢ €
V: Ap € H} = {¢p € H*(Q) : % = 0 on I'}. Also we define the sine
function for z € H = L?(Q) by (sinz)(z) = sinz(z) for a.e. z € Q.
Using the operator A and sine function siny, the system (2.1)-(2.3) is
converted to the following Cauchy problem in H.

(2.5)
d? -
A a0+ Y s by 500, £ 0.1),
_ dy .\ _
y(0) = vo, E(O) =Y1-

We define a solution space available to (2.5) and its inner product as
follows:

Wy(0,T) = {glg € L*(0,T; V), ¢’ € L*(0,T;V),¢" € L*(0,T;V')},

(F, w0 = /0 ((F(8), (1) + (£ (£), g/ ®) + (F"(5), 6" (B)v) d,

where (-, )y is the inner product of V’.
We give the definition of a weak solution for the Cauchy problem
(2.5).

DEFINITION 2.1. A function y is said to be a weak solution of (2.5)
if y € Wy (0,T) and y satisfies

W' )+ (ay' (), 0) + (By (), 9)

L
+ '71 sin sz ) (5y()u ¢)
i=1

= (f(-),¢) forall ¢ €V in the sense of D'(0,T),
¥(0) =y, ¥'(0) =y,
where D’'(0,T') denotes the space of distributions on (0, 7).

For the existence, uniqueness and regularity of the weak solutions for
(2.5), we can prove Theorem 2.2. For the proof of Theorem 2.2, see Ha
and Nakagiri [6].



Identification of constant parameters 935

THEOREM 2.2. Let o, 3> 0, §,vi;,k; € R,i=1,...,L and f, yo, 11
be given satisfying

(26) f € L2(0’ T; VI)} Yo € Hl(Q)? € LQ(Q)

Then the problem (2.5) has a unique weak solution y in Wy (0,T). The
solution y has the regularity

(2.7) y € C([0,T]; H'()), ¥ € C([0,T]; L*(2))
and it is estimated by

28) Iy’ + ly®I < Culllyoll* + w1 * + 11 Z20 79, t € 0,71,

T
(2.9) /O ly' @)1 dt < Calllyoll® + Iy * + 1/ 1720 795

where C1,Cy are constants depending only on «, 3, 6, 7; and k;.

Next we consider the linearized Cauchy problem of (2.5).
(2.10)

2
d d@;ﬁ” + aA%(ti) + BAy(t) + 8y(t) + B(t)y(t) = f(t), te€(0,T),
yO =weV, () =yeH,

where B(-) € L*>(0,T;L(H)). The definition of a weak solution for
(2.10) is same as given in Definition 2.1. Then we can prove Corollary
2.3.

COROLLARY 2.3. Under the same conditions in Theorem 2.2 with-
out the conditions on vy; and k;, the problem (2.10) has a unique weak
solution y in Wy (0,T). The solution y satisfies (2.7), (2.8) and (2.9), in
which Cy1,Cy are constants depending only on «, 3,8 and the L>(0, T}
L(H)) norm of B(").

REMARK 2.4. The constant C; in Theorem 2.2 can be chosen uni-
formly bounded on each bounded set of «, 3,8, v;, ki, and 4.

3. Identification of constant parameters

From now on we will omit to attach the interval notation (0,7) to
all equations. In this section we study the problems of identification for
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the following perturbed sine-Gordon system.

L

y" + (o + ®)AY + (B0 + f2) Ay + ) visinkgy + 8y = vf,
(3.1) —

y(0) =0, ¥'(0) =,
where ap > 0 and Gy > 0 are fixed. In (3.1) we multiply a constant v
to the forcing term f and replace the diffusion parameters « to ag + a?
and 8 to o+ 32 to obtain the linear space of parameters o, B,%i, 0, ki, V.
Hence the diffusion terms in (3.1) never disappear and are uniformly
coercive for all «, 3 € R. For setting the identification problems of the
parameters «, 3,7;,9,k; and v in (3.1), we take P = R2L+4 a5 a set of
parameters ¢ = («, 3,v1,...,7L,0,K1,---,kL,). The Euclidean norm
and inner product of P are denoted simply by |- | and (-, -), respectively.
For simplicity of notations we write ¢ = (o, 8,7;,6,ki,v) € P. By
Theorem 2.2, for each ¢ € P there exists a unique weak solution y =
y(q) € Wy(0,T) of (3.1). Hence we can find a solution map from P to
Wy (0,T) such that we give a relation between ¢ and y(q).

Let K be a Hilbert space of observations and let || - | x be its norm.

The observation of y(g) is assumed to be given by

(3.2) z(q) = Cy(q) € K,

where C is a bounded linear observation operator of Wy (0,T) into K.
We introduce a cost functional J(g) subject to (3.1) and (3.2) as follows:

(3.3) J(q) = [ICy(q) — zall’c + (Mq,q) for g€ P,

where z; € K is a desired value of y(q) and M is a symmetric and
non-negative (2L + 4) X (2L + 4) matrix on P = R?L+4,

Assume that an admissible subset P,4 of P is convex and closed. As
in [7] we shall solve the following two problems.

(i) Find ¢* € P,q satisfying

(3.4) nf J()=J(@);

(ii) Deduce necessary conditions on g*.

As usual we call ¢* an optimal parameter and y(q*) the optimal state
corresponding to ¢*. For solving the problem (i) we give some sufficient
conditions such that P,4 is a compact subset of P or M is a positive
matrix. For solving (ii) we use an inequality given by

(3.5) DJ(g*)(g—¢") >0 forall g€ Py,
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where DJ(q*) denotes the Gateaux derivative of J(g) at ¢ = ¢* in the
direction g — ¢*. That is, we analyze the inequality (3.5) by introducing

an adjoint state equation for (3.1) and deduce necessary conditions on
*

q .

3.1. Existence of optimal parameters

The continuity of ¢ — y(q) is crucial to solve the problems (i) and
(ii).
THEOREM 3.1. The map q¢ — y(q) : P — Wy (0,T) is weakly con-

tinuous in the sense that y(q,) — y(q) weakly in Wy (0,T) as ¢, — g in
R2L+4,

PTOOf' Suppose dn = (amﬂm%mémﬁimyn) —q= (aaﬂ)’)/i,(sa Kli,l/)
in R2L+4a i'e'a Op — ayﬁn - /6771'71 - ’Yia(s'n - 6) Ki, — KiylUp —V in
R. Let y, = y(gn) be the weak solution of
(3.6)

L
Y + (a2 + a0) Ay + (B2 + Bo) Ay + D i, sin ks, ¥ + 6y = v f,
i=1
¥(22;0) =y, ¥'(gn;0) = 11

It follows from (2.8) and (2.9) that

(1% + lyn @1 < Clan) (ol + ly1* + 11 F20,riar))» Yt € (0,71,

T
/0 lyn (ON7dt < Ca(gn) (lyoll + ly11* + 1200 75v)s

where Ci(qn) and C(gy) depend on an, Bn, Vi, , Ki.,0n and vy. Since
a2+ ay > ap and B2 + By > [o for all n, the sequences {Ci(gn)}
and {Cy(gn)} are bounded in R = [0,00). Hence {y,} is bounded in
L>®(0,T;V) and {y/} is bounded in L2(0,T; V). Also we can easily ver-
ify that {y } is bounded in L?(0,T;V’) by applying the boundednesses
of {yn}, {v}, {Ayn} in L2(0,T; V’) the boundedness of {g,,} in R?/+4
and the inequality |sink;, yn| < |ki,|lyn| to the first equation in (3.6).
Hence we can extract a subsequence of {y,}, denoting it by {y,} again,
and choose z € Wy, (0,T) such that

yn — z weakly in L2(0,T;V),
Y, — 2 weakly in L2(0,T;V
y! — 2" weakly in L?(0,T;V
2(0) = yo, 2'(0) = y1.

(3.7) ),



938 Junhong Ha and Shin-ichi Nakagiri

Since the embedding V < H is compact, the embedding L?(0,T;V) N
WL2(0,T; H) — L2(0,T; H) is also compact. Since {y,} C L(0,T; V)N
W12(0,T; H), we see by the first one in (3.7) that,

(3.8) yn — 2 strongly in L*(0,T; H),
which yields

(3.9 Snyn — 62 strongly in L%(0,T; H).
Also the nonlinear term is estimated by

Vi, 8iN K4, Yn (t) — i sin ks 2(t)|
(3.10) < inkin — Yikillyn ()] + |yillsillyn (8) — 2(2)].

Since v;, — Vi, ki, — %i and {y,} is bounded in L*(0,T; H), we have
from (3.8) and (3.10) that

L L
(3.11) Z%‘n sin ki, yn — Z'y,- sink;z strongly in L2(0,T; H).

i=1 i=1
Finally we take the limit 7 — oo on the weak form of (3.6) by using

vp — v, conditions (3.7), (3.9) and (3.11). Then z is a weak solution of
(3.12)

L
2"+ (o + ap)AZ + (5% + o)Az + Z% sink;z + 0z = vf,

=1
2(0) =yo, 2'(0) = .

Hence by the uniqueness of weak solutions, we have z = y(g). These
prove that y(gn) — y(q) weakly in Wy, (0,T) without extracting a sub-
sequence {g,} again by the uniqueness of weak solutions. O

Theorem 3.2 follows immediately from Theorem 3.1 and the lower
semi-continuity of norms.

THEOREM 3.2. If P,y C P = R2L+4 s compact or M is a positive and
symmetric on R25X%4, then there exists at least one optimal parameter
q* € Pqq for the cost (3.3).

Proof. If M is a positive and symmetric matrix on R2+4, then we
see easily that the minimizing sequence {g,} such that lim, ., J(g,) =
infyep,, J(q) is bounded in R2+4. If Py, is compact, it is trivial that
the minimizing sequence {g¢,} is bounded in P. Since the cost is lower
semi-continuous with respect to the weak topology of Wy (0,T), this
theorem follows immediately from Theorem 3.1. O
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3.2. Necessary conditions

For the proof of necessary conditions for optimality we utilize the
Gateaux differential of y(¢g) with respect to the parameter ¢ € P. So it
need to estimate quotients zx = (y(gx) — y(¢*))/A in Wy (0,T), where
o =¢ +XMg—¢*), A€ [-1,1] and ¢,¢* € P. We set yx = y(qx) and
y* = y(q¢*) for simplicity. Let us begin to prove that the weak Géteaux
differential of y(q) at ¢* in the direction ¢ — ¢* exists in Wy (0,7") and
it is the solution of a related differential system.

THEOREM 3.3. The map q — y(q) of P into Wy (0,T) is weakly
Gateaux differentiable. That is, for fixed q = («, 3,7, 6, ki, V) and ¢* =
(a*, B*, 4}, 6%, Kk}, v*) in P the weak Géateaux derivative z = Dy(q*)(q —
q*) of y(q) at ¢ = q¢* in the direction q — ¢* exists in Wy (0,T") and it is
a unique weak solution of the system

Z”—f— (a*2+a0)Az'+(ﬂ*2 +,8())AZ
L * K *, % *
(3.13) + 3 (kY coskiyF)z + 0%z = fo,

where y* = y(¢*) and

fo=2a"(a" — a)Ay” +26°(5" — f)Ay" + (v — ) siny” + (5" = )y”
L L
+Z * — ;) sink;y -l—Z v cos kY ) (ki — k)Y + (W —v)f.
i=1

i=1

P’I"OOf. For fixed g weset gy = q*+)‘(q_q ) (Ol)\, B, Yixs 6)0 Kiy, V)x);
X € [—1,1]. We recall the simplified notations yx = y(gx) and y* = y(q¢*),
which are the weak solutions to (2.5) for given parameters gy and g¢*,
respectively. Then gy € P and |gx — ¢*| = |Allg—¢*| — 0 as A — 0.
Hence by Theorem 3.1 we have

(3.14) yr — y* weakly in Wy (0,T) as A — 0,
which also implies

(3.15) yr — y* strongly in L%(0,T;H) as X — 0.
Since y, is the weak solution, by (2.8) we have

(3.16) O3 2 sup{|lya())[1* + IA(&)* : (¢, ) € [0,T] x [-1,1]} < oo
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By integral mean value theorem the quotient zy = (yx — ¥*)/A\, X # 0
satisfies
(3.17)
Z;{ + (a*2 + ao)Azf\ + (ﬂ*Q + Fo)Azy + B(\t)zy + 0% 2y = fi,
2A(0) = #(0) = 0,

where B(},-) = Zle v (fol K} coskr(Byx + (1 — 0)y*) dO) and

fHr=[2a"(a* —a) — Ma - a*)Q]AyS\
+[28(8" — B) — A(B — 5)*) Ayx

) y,\+Z ;= Vi) SinKiAYA

+ Z% /cos Okinyx + (1 — 0)siyn) dO(k] — ki)yn + (v — v*) f.

Now shall show that {z,} is bounded in Wy (0, T) by applying Corol-
lary 2.3. It is verified readily that

(3.18) IBOS O cear ZI

Also f) is estimated as follows.

< 2l o = al + Ma = a)llya @)l + [218°] 18" - 8]
+AB = BV ya@)l + 16" = 6llya()] + v = v [l £ D)+

L
(319) + D I = llel + A = £3) ln(®)] + Wi w31k} — millya(®)]),

where we used the inequality || Ay (t)||« < [l¥4(¢)]|. Since {yx} is bounded
in Wy(0,T), the above estimate implies that { f}, is uniformly bounded
in L2(0,T; V'). Applying (3.18) and (3.19) to Corollary 2.3 yields that
{zx} is bounded in Wy (0,T). Hence we can choose a subsequence of
{22}, denoting it again by {z)}, and choose z € Wy (0, T) such that

zy — z weakly in L2(0,T;V),
2y — 2/ weakly in L%(0,T;V),
2y — 2" weakly in L2?(0,T; V"),
2(0) = yo, 2/(0) = y1.

(3.20)
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Now let us prove that

(3.21) )l\ir% fr = fo weakly in L2(0,T;V").

It is clear from (3.15) that

(3.22) sin kiyx — sinkgy* strongly in L2(0,T; H) as A — 0.

Here we set Gi(yx) =7 fol Kk} cos (Bkiya + (1 — 0)sfyn) dO(K] — Ki)ya-
In order to show (3.21) from (3.20) and (3.22), it is enough to show

(3.23) /1\11% Gilyn) = (7 cos kjy*) (K} — ki)y*  strongly in L%(0,T; H).

Put Gi(yn) — (7 cos k{y*) (k] — we)y* = B} (y») + EF (y»), where
E}(A;)
1
=2t [ i cos (Bringn + (1= Ortn) dB(s: — mi)om — 07,
0
E}(X%-)
L .
=57 [ wileos (mingn + (1 = ki) = cos wy") (] — iy
0
It is easily verified by (3.15) and the boundedness of the cosine operators
in H that
(3.24) )l\ir% E}()\;-) =0 strongly in L*(0,T; H).

We consider the convergence of Ef Since y) — y* strongly in L?(0,T;
H),

Okinyy + (1 — 0)kjyx — k;y" strongly in LQ(O, T;H)

as A — 0 for all 8 € [0,1]. Since the cosine operator is continuous on
L*(0,T; H),

cos(Okinyx + (1 — 0)k}yr) — coskjy* strongly in L2(0,T; H).

By the uniform boundedness of a sequence {cos(fk;xyx + (1 — 0)kfyr)}
in 6, we apply Lebesgue dominated convergence theorem to obtain

1
/ cos(Oriayx + (1 — 0)k}yr) df — cosk}y* strongly in L2(0,T; H).
0

Hence we show limy 0 E?(X;-) = 0 strongly in L2?(0,T; H), which
proves (3.21).
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Next we consider the convergence including z) terms in (3.17). By
using the classical compactness theorem again, we suppose, by taking
subsequence if necessary, that

(3.25) 2y — 2z strongly in L?(0,T;H) as X — 0.

Then by using (3.25), as in the similar way as above, we can prove the
strong convergence

1
(3.26) ( [ i cos sttom + (1= 00) de) o — (11KY cosR2y)z
0

in L2(0,T; H).

Finally we take the limit A — 0 in (3.17) by using (3.20), (3.21)
and (3.26). Then the limit z satisfies the equation (3.13). By applying
Corollary 2.3 with B(t) = Zle ik} cos KFy*(t), we see that the equa-
tion (3.13) has a unique weak solution z € Wy/(0,T). Hence, without
choosing subsequences, zy converges weakly to z in Wy (0,T), so that z
is shown to be a weak Gateaux derivative Dy(q*)(¢ — ¢*)) in Wy (0,T).
This completes the proof. O

Since the map ¢ — y(q) : P — Wy (0,T) is weakly Gateaux differen-
tiable at ¢* in the direction q — ¢*, J(g) is Gateaux differentiable at ¢*
and the inequality (3.5) implies

(327) (Cy(q*) - Zd7CZ>K’,K > 07 Vq € Pad,

where z is the solution of (3.13) (cf. Ahmed (1, p.46]). To avoid the
identification problem from complicating we shall study the problem
according to the following four types of simple observations, which are
possible due to (2.7).

1. Observe the distributed state Cy(q) = y(q) € L?(0,T; H) and take
K = L2(0,T; H);

2. Observe the distributed velocity Cy(q) = y'(q) € L*(0,T; H) and
take K = L?(0,T; H);

3. Observe the time terminal state Cy(q) = y(q;T) € H and take

K=H;
4. Observe the time terminal velocity Cy(q) = ¥/(q; T) € H and take
K=H.

1. Case of Cy(q) = y(g) € L*(0,T; H)

In this case we give the cost functional by

(3.28) J(q) = rlly(q) — zallT2qor;my + (Ma, ),
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where zg € L2(0,T; H) and r > 0. Then the necessary condition (3.27)
with respect to (3.28) is written by

(3.29) r(y* = 24, 2) 203y + (M@*,9—q7) 2 0, Vg € Paa.
We introduce an adjoint state p given by the system

p// (a*2 + Oz())Ap'—l- (,6*2 +ﬁ0)Ap
(3.30) 4 Z Yik;coskiy )p+ 0 p =r(y" — zq),
P(T) Zp(T) = 0,

We can easily show the existence and uniqueness of weak solutions for
(3.30) if we take the time reversion t — T — ¢t and apply Corollary 2.3.
Multiplying (3.30) by z and integrating it over [0, T] by using (3.13) the
necessary condition corresponding to (3.29) is characterized by

T
/O (b, 20" (0 — ) Ay" +26*(6" - B)Ay* + (6" — )"
L

+Z *— i) sinkyt + Y (9 coskiy*) (k] — k)t + (v —v)f) dt
=1

+(Mq .- —q) >0 for all g € Pug.

Summarizing these we have the following theorem.

THEOREM 3.4. The optimal parameter q* for the cost (3.28) is char-
acterized by the two states y = y(q*),p = p(¢*) of the system

L
Y + (o + D)y + (Bo + B*) Ay + Z’y: sinkly + 8%y = v* f,

=1
y(0) = vo0, ¥'(0) =1,

e (8" + Bo) Ap
+Z i Ky coskjy)p + 6" p = r(y — 2q),
p(T) = §(T) =0
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and one inequality

T
/ (9,207 (0" ~ ) Ay’ + 26°(6" — B) Ay + (5" — by

+Z Y =V Sln”y"'z Vi cos ki y) Ky — Ki)y
i=1

+ (V —v)f) dt+ (Mq*,q" —q) >0, Vg€ Pgq.

2. Case of Cy(q) = y'(q) € L?(0,T; H)
In this case we consider the cost functional given by
(3.31) J(a) = rlly'(@) ~ zall T2, m) + (Mg, ),

where z4 € L2(0,T; H) and r > 0. Then the necessary condition (3.27)
with respect to (3.31) is written by

(3.32) r(y” — 24,2 ) 200y + (Mq*, g — q°) 2 0, Vg € Pyq.
We introduce an adjoint state p defined by the system
(a*2 +a0)Ap’ + (6% + fo)Ap
(3.33) +Z/ Fkicos kiy*)p ds + 0*p = r(y* — 2q),

p(T) = p(T )=0.

Through the approach as similarly as we do in Theorem 2.3, we can
prove the existence, uniqueness and regularity of a weak solution p €
Wy (0,T) of (3.33). Let us multiply 2’ on the both side hands of (3.33)
and integrate it on [0,7] by using (3.13). Then by (3.32) a necessary
condition on ¢* is given by

T
/0 (0,207 (@ — @) Ay™ +26*(8" — B)Ay" + (6" — d)y"

L

+z =) sty + 300 cos K7 — i)y

=1
+(V —V)f> dt + (Mq*,q—q") <0, Vge& Py.

Summarizing these we have the following theorem.
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THEOREM 3.5. The optimal parameter q* for the cost (3.31) is char-

acterized by two states y = y(¢*),p = p(¢*) of the system

L
'+ (o + )y + (Bo + B Ay + Y _ v sinkfy + 5y = v*f,

i=1

y(O) = Yo, y,(O) = U1,
P’ — (@ + ao)Ap' + (B + Bo) Ap
L ,r
+ Z/ (vi ki coskfy)pds + 8*p = r(y — zq),
i=1v1

p(T) =p/(T) =0

and one inequality

T
/0 W', 20%(0" — o) Ay’ + 26% (8" — B)Ay + (5" — Oy
L L
+ > (0 —w)sinkly+ (] cos Ty (K] — ki)y + (VF —v)f) dt
=1

=1

+ (Mq*aq - q*) < 07 vq € Pad-

3. Case of Cy(q) = y(q¢;T) € H
In this case the cost functional is given by
(3.34) J(q) =rly(¢; T) — z4)* + (Mg, g),

where zg € H and r > 0. Then the necessary condition (3.27) with
respect to (3.34) is written by

(3.35) r(y*(T) — za,2(T)) + (Mq",q = ¢*) 2 0, Vg€ Pug.

We introduce an adjoint state p given by the system
(3.36)

L

p'—(® + a) Ap' + (8" + Bo) Ap+Y _ (¥} kf cos k7y*)p ds+6*p = 0,
i=1

p(T) =0, p(T) = —r(y"(T) - 2a).

Since r(y*(T)—z4) € H, by Corollary 2.3, there is a unique weak solution
p € Wy(0,T) of (3.36). Similar to the cases 1 and 2 the necessary
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condition (3.35) is characterized by

T
/0 (1, 20" (0" — a) Ayl + 28" (6" — B) Ay + (5" — 8)y

+ Z(% i) sin k7Y + Z(% cos kfy) (k] — ki)y + (v* —v)f) di

i=1
+(Mq ,q—q") >0, Vg€ P

Summarizing these we have the following theorem.

THEOREM 3.6. The optimal parameter ¢* for the cost (3.34) is char-
acterized by two states y = y(¢*),p = p(q*) of the system

L
Y + (a0 + a*?)y + (Bo + ) Ay + ny;‘ sinkjy + &'y = v*f,
i=1
y(0) =wo, ¥'(0) =wu,
L

P’ = (0 + ap)Ap + (B + Bo)Ap + Y _ (7} K] coskjy)p + 8"p =0,

p(T) =0, P(T) = —r@(T) —z)

and one inequality

T
/0 (D, 207 (o — ) Ay + 268" — B) Ay + (5" — by

L

+Z — i) sinkly + Z(% cos k;y) (s} — ki)y + (v —I/)f) dt
i=1

(Mq ,q—¢") >0, Vg€ Py

4. Case of Cy'(q) = vy'(¢;T) € H
In this case the cost functional is given by
(3.37) J(@) = y'(¢:T) — zal” + (Mg, q),

where z4 € H and r > 0. Then the necessary condition (3.27) with
respect to (3.37) is written by

(3.38) r(y* (T) — 24,2 (T)) + (Mq*,q — ¢*) > 0, Vg € Pyq.
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We consider the adjoint state p given by system
(3.39)

L
P — (@ + ag)Ap’ + (B2 + Go)Ap + Z YKl coskjy*)p + 6*p =0,
i=1
p(T) =r(y*(T) — za), #'(T) =r(a™ +ao)(y" (T) - za)-

In general y* (T) — zg € V in spite of y* (T') — zg € H, we can not give
any information of solutions for the equation (3.39). Thus, in this case
we assume the additional regularity y*/(T) — 24 € V and hence have the
unique solution p € Wy (0,T) of (3.39). As doing as the previous cases
the necessary condition (3.38) is characterized by

T
/0 (9,20 (0" — a) Ay + 26" (6" — B) Ay + (5 ~ 6)y

+Z ¥ — i) sin k] y+z W cos k]y) (K] — Ki)y + (V* — v)f) dt

=1

(Mq »qd — ¢ ) 205 VQEPad-
Summarizing these we have the following theorem.

THEOREM 3.7. Assume that y* (T) — zg € V. Then the opti-
mal parameter q* for the cost (3.37) is characterized by two states

y = y(q*),p = p(q*) of the system

L
¥ + (o + )y + (Bo + B*?) Ay + Z'y;‘ sinkfy + 6%y = v*f,

i=1
¥(0) =y, ¥'(0) =1,
L
P —(a*? 4 ap)Ap’ + (82 + Bo) Ap +Z('yi*fif cos k;y)p ds + 8*p = 0,
i=1

p(T) = r(y(T) = za), P'(T)=r(e*?+ao)(y/(T) - z)
and one inequality

T
/0 (b, 20" (o — ) Ay + 26°(5" — B) Ay + (5 — B)y

—I-Z ¥ — ;) sin k; y+z Feoskiy) (K — Kk)y+ (U —v)f) di
i=1
—|—(Mq,Q*Q)ZO, quPad-
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EXAMPLE 3.8. Let us deduce the bang-bang principle for a case
where M is the null operator and P,y is compact. For simplicity we
consider the case of Cy(q) = y(q) € L*(0,T;H). Assume that P,q is
given by

Pag = [0, 0] x [0, B1] X TIL; [yi1, ia] X [81, 2] x T, [k, kaa) X [1, )

In this case the necessary condition in Theorem 3.4 is equivalent to

T
(3.40) / (0 (6 — ) Ay (£), p(t)) dt > 0, Ve € [0, e,
0
: |
(3.41) /0 (B*(5° — B)Ay(t), p(t)) dt >0, VB € [0,B1],
T
(3.42) /0 ((F = ) sin k2y(8),p(1)) dt > 0, Y € [yan, il
T
(3.43) /O (5 — BYy(t), p(t)) dt 0, Y6 € (61,5,
T
(3.44) /0 (kF — i) (97 cos KTy()y (), p(t)) dt > 0, Vs € [, kia],

T
(3.45) /0 (v = V) F(),p(t)) dt > 0, Vv € v, va).

First let us analyze (3.40). Put a = fQ V%(t,x)Vp(t,x) dzdt and
assume that a # 0. Then (3.40) is rewritten simply by

a*(a* —a)a >0, Vae€[0,a1].
Consequently it is easily verified that a* is given by
a* = %{sign(a} +1}ag or a*=0.
Next we consider (3.41). Also put b = fQ Vy(z,t) - Vp(z,t) dzdt and
assume b # 0. Then similarly as above, 8* is given by
p* = %{sign(b) +1}p3; or B*=0.

Put d = ny(t,m)p(m,t) drdt and assume d # 0. Then the condi-
tion (3.43) is rewritten by (6* — d)d > 0, V& € [d1,02], which imply
§* = L{sign(d) + 1} — 1{sign(d) — 1}61. Similarly, it follows form
(3.42), (3.44) and (3.45) that v} = {sign(c;)+1}vi2— § {sign(c;) — 1},
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K} = {sign(k;) + 1}riz — 3{sign(k;) — 1}xa and v* = 1{sign(n) +
1}vy — 1{sign(n) — 1}v1 provided that ¢; = fQ(sinme-*y(t,x))p(t,x)
dedt # 0, ki = [,(7] coswjy(t, 2))y(t, z)p(t,z) dadt # 0 and n =
fQ f(t,z)p(t,z) dxdt # 0. These are the so called bang-bang princi-
ple for the optimal parameter ¢* = (a*, 5,4}, 6%, k7, v%).

ExAMPLE 3.9. We consider the case where P,y = P and M is

the identity operator on P. As in Example 3.8 we consider the case
of Cy(q) = y(q) € L?(0,T; H). Then by Theorem 3.4 we have 6* =

— oyt 2)p(t,2) dzdt, v* = — [, f(t,z)p(t, x) dzdt, vf = — [ (sink]
y(t,x))p(t, z) dedt and K} = —~f fQ y(t,x)(cos ly(t, x))p(t, z) dzdt. If

2 fo V%(t,m)'Vp(t,:c) dzdt+1 # 0,and 2 [, Vy(t, t)-Vp(t, z) dzdi+1 #
0, then a* =0 and g* = 0.
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