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A THEORY OF RESTRICTED
REGULARITY OF HYPERMAPS

ANTONIO BREDA D’AZEVEDO

ABSTRACT. Hypermaps are cellular embeddings of hypergraphs in
compact and connected surfaces, and are a generalisation of maps,
that is, 2-cellular decompositions of closed surfaces. There is a well
known correspondence between hypermaps and co-compact sub-
groups of the free product A = C2xC2xC3. In this correspondence,
hypermaps correspond to conjugacy classes of subgroups of A, and
hypermap coverings to subgroup inclusions. Towards the end of
[9] the authors studied regular hypermaps with extra symmetries,
namely, G-symimetric regular hypermaps for any subgroup G of the
outer automorphism Out(A) of the triangle group A. This can be
viewed as an extension of the theory of regularity. In this paper
we move in the opposite direction and restrict regularity to normal
subgroups © of A of finite index. This generalises the notion of
regularity to some non-regular objects.

1. Introduction

Regularity has always been present in geometry, often in the form of
regular polyhedra or regular tessellations. Well known examples are the
nine regular polyhedra comprising the five Platonic solids (the convex
regular polyhedra) and the Kepler-Poinsot polyhedra. These polytopes
can be viewed as regular maps, that is, cellular decompositions of closed
surfaces. In the past two centuries there has been growing interest in
highly symmetric maps mainly due to their connections with group the-
ory, elliptic functions, the four colour problem, Riemann surfaces, Galois
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theory and algebraic curves, among others. Excellent accounts linking
regular maps with some different fields of mathematics can be found in
the surveys of Jones [18], Jones and Singerman [21], Nedela [24] and
Siran [26]. After the famous Belyi theorem saying that “A Riemann
surface X is defined over the algebraic numbers Q if and only if there is
a covering (now called the Belyi function) from X to C unramified out-
side 0, 1 and 00” [2] and the remarkable observation by Grothendieck
[16] that the pre-image set f~1([0,1]) C X of a such Belyi function f
is a bipartite graph cellularly embedded on the surface X (and hence a
hypermap), there has been a growing interest in the hypermap theory.

Regularity has had different meanings in history. For example, uni-
formity (that is, vertices, edges and faces having constant valencies, say
I, m = 2 and n, respectively) has been taken for regularity in the early
studies of regular polyhedra of genus one and two by Errera [14]. Al-
though this weak form of regularity is enough to describe other “strong
forms” of regularity in the sphere (“rotary”, “reflexible”), this feature
is exclusive to this surface; no other compact orientable surface has a
similar behaviour. As noticed by Brahana in [3], for a surface of genus
one (Anchor Ring) it gives only a certain measure of “regularity” (read
“orientable regularity”). But Brahana himself took regularity to mean
“orientable regularity” (that is, “rotary” or “orientable direct regular-
ity”). There is a large number of papers on regular (or reflexible) maps,
hypermaps and polytopes published in the 20th century. Most of the
papers dealing with non-regularity are directly or indirectly dealing with
some form of a lesser degree of regularity.

In this paper we introduce a restricted form of regularity that casts
light upon some of the weaker forms of regularity studied earlier. In
[22] and [9] one finds a study of regular maps and hypermaps with extra
symmetries, namely, the Out(A(oo, 00, 2))-symmetric regular maps and
Out(A)-symmetric regular hypermaps, respectively. These are regular
(hyper)maps which are invariant with respect to the outer automor-
phisms. This can be viewed as an extension of the theory of regularity.
In this paper we explore the opposite direction and propose to restrict
the study of regularity to subgroups of A. We set up the notion of O-
regularity for any normal subgroup © of A with finite index, widening
this way the notion of regularity to include some (not all) non-regular
hypermaps as “regular” hypermaps in some sense.

Reduced regularity is not at all new. An orientably regular map
(or hypermap) is the most known restricted form of regularity, in this
case restricted to orientation preserving automorphisms (A -regularity).
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Less familiar is the orientable bipartite-regularity that appeared in the
medial maps of regular oriented maps studied by Archdeacon, Siran
and Skoviera [1], an orientable regularity restricted to bipartite-face-
preserving automorphisms. Among the 14 automorphism types of edge-
transitive maps classified by Graver and Watkins [15], and referred by
Siran, Tucker and Watkins in [27], 11 correspond to restrictly regular
maps. Other forms of restricted regularity can be found in older litera-
ture, though not directly. Some maps appearing as geometrical illustra-
tions of groups in Burnside’s monograph [11] (and also in Dyck [13]) are
non-regular (in the “reflexible” and “orientable” sense), and even non-
uniform. For example, Fig. 10 in the Burnside’s book [11] illustrates a

A
non-regular map which is (Rg, (RoR;)%) -regular in our restricted sense
of regularity.

The structure of the paper is organised as follows. In the last three
subsections of the introductory part we give a brief introduction to the
theory of hypermaps. For a deep introduction on maps/hypermaps we
refer the reader to [4, 9, 10, 12, 19, 21]. Section 2 is dedicated to
O-conservative hypermaps, a generalisation of “orientable hypermaps”
(A*-conservative hypermaps), and to ©-regularity; some classic results
in the theory of hypermaps are generalised here. The main topic of sec-
tion 3 is related to the monodromy group of a ©-conservative hypermap.
Some concepts are generalised, for example, the “even word subgroup”
Mon™t(H) of the monodromy group Mon(H) of an orientable hyper-
map H generalises to ©-word subgroup Mon®(H) of the monodromy
group of a ©-conservative hypermap H. The ©-monodromy group of a
©-conservative hypermap is introduced; relative to the even word sub-
group Mon™(H) = (R, L), the A*-monodromy group is just the group
generated by the restrictions of R and L to one of the two orbits induc-
ing the two orientations of the underlying orientable surface. Section 4
deals with the notion of ®-marked hypermaps, a generalisation of “ori-
ented hypermaps” (A*-marked hypermaps). The relationship between
O-hypermaps and ©-conservative hypermaps is explored in section 5.
Section 6 introduces O-slices, the O-regions corresponding to “flags”
(A-slices) in hypermaps and “darts” (A%-slices) in oriented hypermaps.
Section 7 illustrates, on an example, the construction of a regular ©-
marked hypermap with a given group as monodromy group. In section
8 we treat ©-regularity in terms of regular coverings and in section 9 we
introduce ©-type and derive a formula for computing the characteristic
of a ©-regular hypermap. The last section (section 10) is devoted to
answering the question of when a hypermap can be “restrictly” regular
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or not. Families of non-regular maps that are restricly and not restrictly
regular are given.

1.1. Hypermaps

A (algebraic) hypermap is a four-tuple H = (F'; rg, 1, r2) consisting of
a non-empty finite set F', the set of flags, and three permutations ryp, ri,
ro of F satisfying rg = r% = 72 = 1 and generating a permutation group
Mon(H) = (ro,r1,72), called the monodromy (or A-monodromy) group
of H, that acts transitively on F'. If one of the r;’s has fix points then
‘H has boundary, otherwise ‘H is boundary-free. The transitive action
implies |Mon(H)| > |F|. Every hypermap corresponds to a cellular
embedding of a hypergraph G in S, also called a topological hypermap.
Conversely, every topological hypermap can be described by a four-tuple
H = (F;rg,r1,72) introduced above.

A covering from H to H' = (F';sg,s1,52) is a function ¢ : F — F’
satisfying r;9 = 1s; for ¢ = 0,1,2. Due to the transitivity of the the
actions, every covering is necessarily surjective. An isomorphism is an
injective covering. If ¢ is a covering then the assignment r; — s; extends
to a canonical epimorphism from Mon(H) to Mon(H'). An automor-
phism of H is an isomorphism from H to H, that is, a permutation of
F commuting with each 7;, hence commuting with every g € Mon(H).
The automorphisms of H form a group Aut(H) that acts semi regularly
on F. As a consequence, |[Aut(H)| < |F|, and hence we have

[Aut(H)| < [F| < [Mon(H)|.

An equality on one side implies an equality on the other side. This
happens if and only if the action of Aut(H) on F is regular. In this case
‘H is called a regular hypermap.

The type of a hypermap H is a triple (k;{;m), where k, I, and m are
the least common multiple of valencies of hypervertices, hyperedges and
hyperfaces respectively. A map of type {m,k} is a hypermap of type
(k; 2;m). Denoting by V, £ and F the set of hypervertices, hyperedges
and hyperfaces of a boundary-free hypermap H (respectively), then the
characteristic x(H) of H, that is, the characteristic of the underlying
surface, is given by the well known formula,

1]

x(H) = V| + €] + 17 - 5
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1.2. Finite permutation representation of hypermaps

Let A denote the free product Cy * Cy * Cy with presentation (R,
R1,Ry | Ry*=R)?=R,? = 1). There is a natural epimorphism p: A —
Mon(H) taking R; — 7;. This epimorphism induces an action w - d :=
wdp of A on F. Fixing a flag w € F, let H be the stabiliser of w in
A. Then A acts on the set of right cosets A/H of H in A by right
multiplication, and p induces a bijective function p, : A/H — F,
Hd — w-d = wdp. The kernel of p is H* = H,, the core of H in
A. The group A/H* acts transitively on A/H by right multiplication
(Hd - H*9 = HdH*g = Hdg); this action is similar to the action of
the monodromy group Mon(H) on F. Hence the hypermap H can be
identified with (A/H; H*Ry, H* Ry, H*R3), having monodromy group
A/H, = Mon(H). The subgroup H of A is a fundamental subgroup of
‘H. This is independent up to a conjugation in A. The automorphism
group Aut(H) can be identified with N, (H)/H acting on the set of right
cosets F' = A/ H (the set of flags) from the left, that is,

VHge N,(H)/H,Vde AJH, Hd-Hg= Hg™d.

Any automorphism ¥ € Aut(H) is then a function ¢, : Hd — Hg™'d,
for some g € N,(H). The semi-regularity of the action says that if
Hd¢, = Hd then g € H.

The two groups H* = H,, the core of H in A, and H® = (H)A,
the normal closure of H in A, give rise to two regular hypermaps, the
covering core H, and the closure cover ", with the inclusions H, a <
H<H® determining a covering lattice H, — H — HE.

2. ©-conservative and O-regular hypermaps

Let © be a normal subgroup with finite index n in A. We say that
a hypermap H is ©-conservative if its fundamental subgroup H is a
subgroup of ©. It is clear that if H is ©-conservative then so are its
covering core H, and its closure cover M.

THEOREM 1. Let © be a normal subgroup of index n in A. If H is
©-conservative, then

(1) © acts by right multiplication on F with n orbits;
(2) the action of © on F is uniform (all orbits have the same length).

Proof. (1) Naturally that A acts by right multiplication on F =
A/ H and, consequently, the subgroup © also acts by right multiplication
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on F. Each orbit (under the action of ©) is a set of the form HdO© =
{Hdt | t € ©}. Let O, denote the set of orbits {HdO | Hd € F}.
The function ¢ : A/© — O, ©d — HdO, is obviously onto, is well
defined,

Ody =0dy = ditdy = ((did;!)™1)% € ©, since <A,
= Hdi(dy'de) = Hdy € Hd1©
= Hd,©®=Hd,0,

and is one-one,

Hd1® =Hd;® = Hdy= Hd;g, forsomege®0,
= Odigdy! =0didy' =0
= @dl = @dg .

(2) Let HO, Hd,0, ..., Hdy—10 be the n orbits. As Hgd;=Hd;d;*
gd;=Hd;g% € Hd;0, the function v : HO — Hd;©, Hg — Hgd; is
clearly well defined and injective. For any Hd;g € Hd;©, g% € © and
so Hg% ' = Hg% 'd; = Hd;g, which shows that ¢ is onto. O

These n orbits, which can be understood as n flag-colourings, will
be called ©-orbits. If w = Hb is a flag, the ©-orbit determined by w
will be denoted indistinctly by w@© or by Fb8 . Denote by F® the orbit
Ff determined by the flag H. Notice that the normality of © in A
allows us to write Fbe = {Htb | t € ©}. The reason for the last
notation is to bring it closer to the standard notation of F* and F~
used in some literature to mean the two orbits wA™ and wrgA™ of an
orientable map/hypermap.

Some ©-conservative maps/hypermaps are very familiar although
not under this name. For example, an orientable hypermap is a A*-
conservative hypermap, where A% is the even word subgroup of A,
i.e., the normal closure <R1R2,R2R0>A in A; a bipartite hypermap is
a AY_conservative hypermap, where Al is the normal closure (R, Rz)A
of index 2 in A; a pseudo-orientable hypermap (Wilson [28]) is a Af-
conservative hypermap, where A is the normal closure (Rg, R1Rs)",
also a subgroup of index 2 in A.

LEMMA 2. If T = {1 = by,...,b,} is a transversal for © in A, then
Fli’ . ,Fb(i are the n orbits of the action of © on F'.

Proof. The flags Hby, ... , Hb, belong to distinct orbits. In fact, for
t € ©, Hb; = Hb;t implies that bjtbi_l € H C O, which implies that
@bi=@bjt¢>@bi=@bj @bi——‘bj. O
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The following theorem states that both the monodromy group and
the automorphism group of a ©-conservative hypermap act on the set
of ©-orbits 0.

THEOREM 3. If H is a ©-conservative hypermap, then (1) the mon-
odromy group Mon(H) acts transitively on the set of ©-orbits Oy by

right multiplication (Fbe -H,g = F;Z), (2) the automorphism group
Aut(H) acts (not necessarily transitively) on Oy by wOyp = wyO.

Proof. (1) For any g = H,g € A/H, = Mon(H) and for any orbit
Fb6 € Og,
F, .g=F H,g = {Hbtg|te©)
= {Hbgt' |t =t € ©9 =0}

©
= Ry

(2) Let w= Hbe A/H beaflagand w-0 = Ff be the ©-orbit
determined by w. For any automorphism ¢ € Aut(H) = N, (H)/H, ¢
is a function ¢4 : Hb Hg™'b, for some g € N, (H). Since HbO¢, =
Hg™1b80 it follows F, ¢, = F;_lb, that is, wOY = wihO. O

Denote by Aut®(H) the subset of Aut(H) consisting of the automor-
phisms preserving each ©-orbit Ffi , ¢ =1,...,n. This group will be
called the ©-automorphism group of H.

THEOREM 4. Aut®(H) = N, (H)/H.

Proof. If ¢ = HT € N (H)/H (7 € ©), then ¢ preserves each ©
orbit Fy; in fact, Fy¢ = Fo,, = {Ht'b |t =tr~' € ©} = F,. If
¢ = Hg € Aut®(H) < Aut(H) = N,(H)/H, then ¢ preserves each
orbit Fb6 € O. In particular ¢ preserves the orbit Fle determined by

H, and so, Hp € Fle, that is, Hg~! = Ht for some t € ©. Hence g € ©
and ¢ = Hg € N, (H)/H. O

We say that H is ©-regular if Aut® (H) acts transitively on each ©-
R e
orbit Fy , ..., Fy .
THEOREM 5. If Aut®(H) acts transitively on a ©-orbit F;j , then
Aut®(H) acts transitively on any other ©-orbit.

Proof. Let us show that if Aut®(H) acts transitively on the orbit Fj
then Aut®(H) acts transitively on the orbit Fle . For any t € O, there
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is ¢pg = Hg € No(H)/H = Aut®(H) such that Hd(d"1td) = Hdg, =
Hg~d, that is, Ht = Hg™! = H¢,. Hence Aut®(H) acts transitively
on Ff . To finish the proof we show that if Aut®(H) = N, (H)/H acts
transitively on the orbit F} then it acts transitively on any orbit Fde .
For any ¢ € O, there is ¢, = Hg € Ng(H)/H = Aut®(H) such that
H(dtd ') = Hp, = Hg~'. But this is equivalent to Hdt = Hg~'d =
Hdg,. O

THEOREM 6. H is O-regular if and only if H is a normal subgroup
of 8.

Proof. (<) If H < ©, then Ny(H) = © and so, for any t € ©, Ht =
H¢,1, that is, ©/H = N (H)/H = Aut®(H) acts transitively on the
orbit Fle.

(=) If Aut®(H) = N (H)/H acts transitively on the orbit Ff , then
for any ¢ € ©, there is g € Ny (H) such that Ht = H¢g = Hg~. This
says that t € Hg™! C¢ HNg(H) = Ny(H). Hence © C N (H) <
Ny(H)=0. O

Often, regularity in map/hypermap theory appears in the form of
A-regular (or simply regular) and A*-regular. Depending on the con-

text, A¥-regular has been known as “rotary”, “directly regular” or “ori-

entably regular”. Less usual is Aa—regula.r, or “bipartite-regular”.

3. ©-monodromy group

The action of © on the set of flags F' of a ©-conservative hypermap H
induces a natural homomorphism (not onto) « from © to the symmetric
group Sym(F'). The image Im(a) = © ¢ is a subgroup of Mon(H). Call
it the ©-word subgroup and denote it by Mon® (H). In an orientable

+
hypermap the Mon" (H) is just the “even” word subgroup generated
by the “even” words H, R1R3, H, R2Ry.

LEMMA 7. Mon® (H) = ©/H, and Mon" (M) <, Mon(H).

Proof. The kernel Ker(a) is the core of H in A. Moreover, ©/H, <,
A/H, = Mon(H). O

Now, © also acts (by right multiplication) on each ©-orbit Fbe (b €

T). This gives rise to a homomorphism a, : @ — Sym(F;9 ), t —
tay, @ Hbx w— Hbxt. We denote by ©-Mony(H) the subgroup Im(a,) =
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Oa, < Sym(F:) and call it the ©-monodromy group of H on Fbe. In

particular, the ©-monodromy of H on the orbit Fle will be simply called
©-monodromy group of H and will be denoted by ©-Mon(H).

THEOREM 8. ©-Mon,(H) is isomorphic to ©/HS.
Proof. In fact, the kernel Ker(e,) is the core of H® in ©. O

On different ©-orbits the action of © may not be equivalent, however,
they induce isomorphic groups.

THEOREM 9. For any b € T, ©-Mony(H) is isomorphic to ©-
Mon(H) = ©/H,.
Proof. In fact, from the normality of © in A we deduce
©-Mony(H) = ©/HY = (0/H,)" = ©/H, = ©-Mon(H).
O

COROLLARY 10. If H is ©-regular, then (1) ©-Mon(H) = ©/H;
(2) |F| = |A:0©]|©-Mon(H)| = n|6-Mon(H)|.

The semi-regular action of Aut®(H) and the transitive action of

©-Mon(H) on the set of ©-orbits F® of a ©-conservative hypermap
‘H give the following chain of inequalities,

|Aut® ()| < |F°| < [©-Mon(H)].
THEOREM 11. The following statements are equivalent:
(1) H is ©-regular; (2) |Aut®(H)| = |F°| ; (3) |F°| = |©-Mon(H)| .
Proof. H is ©-regular & H<1© & Hy = H & N,(H)/H = ©/H.
By Theorem 9, ©-Mon(H) = ©/H, and by Theorem 4, Aut®(H) =
N, (H)/H. Hence H is O-regular < Aut®(H) = 0/H < |Aut®(H)| =

|F°|. Similarly, |F°| = |©-Mon(H)| < |©: H|= |0 : H,| & H, = H
< H is O-regular. O

For each t € ©, the permutation tc, is essentially the action of ¢
on Fl? . Hence it makes sense to denote by ¢; , the permutation tc,.
F,
b

Having this in mind, we can write

©-Mon(H) = @|Fe ,

and rewrite theorem 9 as follows: for each orbit F, f y 9 6 =0 4.
Fb F
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4. ©-marked hypermaps

As © has finite index in a finite generated group A, by Nielsen-
Schreier theorem © is also finitely generated. Moreover, as A is a free
product Cy * Cy % Cy, by Kurosh theorem (Proposition 3.6, p.120 of
[23]) © is also a free product © =2 Cy % --- % Cy % Coo * -+ x Cop, for a
certain number of factors C; and C,, where the number of factors of one
type (Cy or C) may be empty. According to the above free-product
decomposition (which is unique up to a permutation of its factors),

O ={(a1,...,a5,21,...,2 | a2 =1,i=1...5).

Let rank(®) = m. For simplicity, put {zi,...,zn}={a1, ..., as, 21,
..., 2 }. If there are factors Cs in the above free-product decomposition,
we write them first, so we expect involutions coming first in the above
generator’s set. :

By a ©-marked hypermap we mean a (m + 1)-tuple

Q= (Q;al,...,am),

where 2 is a finite set, aq,...,q;, are permutations of 2 generating a
group G acting transitively on {2 such that the function p: z; — a; ex-
tends to an epimorphism from © to G. This group G is the monodromy
group of @ and will be denoted by Mon{(Q). The name “marked hyper-
map” was chosen because the triple (G, 2, D), where D = {ay,...,an},
is a marked finite transitive permutation group (Singerman [25]). The
epimorphism p induces a transitive action of © on 2 defined by w-d :=
w - (dp), for all d € B. For a fixed w € Q, let @ be the stabiliser of w in
©. Then © acts by right multiplication on the right cosets ©/Q and p
induces a bijective function p, : 6/Q — 2, Qd — wdp. The kernel of
p is the core Qg of @ in ©. The group ©/Q, (which is isomorphic to G
by p) acts transitively on © /@ by right multiplication (Qd- Qg9 = Qdg)
and this action is similar to the action of G = Mon(Q) on ; that is,
the following diagram

0/@x0/Qe — 0/Q

s Jon

QOxG —
commutes. The ©-marked hypermap Q can then be identified with the
©-marked hypermap (0/Q;Qgx1,...,QeTm) With monodromy group
0/Q, = Mon(Q). This subgroup ¢ of © will be a called a ©-marked
fundamental subgroup of Q. Giving two ©-marked hypermaps Q; =
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(Q;a1,...,am) and Qy = (22; 61, .-, Bm), a covering from Q; to Qs is
a function ¢ : 1 — Q9 (necessarily onto by the transitive action) such
that for any w € Q1, wo;¢ = wef;, for i = 1,...,m. An isomorphism
¢ : Q1 — Q3 is just a one-to-one covering and an automorphism of a
©-marked hypermap Q@ = (Q; a1, ..., ay,) is an isomorphism from Q to
Q, that is, a permutation of 2 commuting with each o; (i = 1,...,m).
The above observations prove:

THEOREM 12. If Q = (Q; a1, ..., an) is a ©-marked hypermap, then
Q = (@/TQa Qexh SRR Q@xm) ’

where () is the stabiliser in © of any w € (.

As we can observe from the above theorem, the ©-marked funda-
mental subgroup @ of Q is independent (up to an isomorphism) from
the fixed w; different choices of w give rise to conjugate ©-marked fun-
damental subgroups (conjugation in ©), giving rise to isomorphic ©-
marked hypermaps. In fact, giving any conjugate Q! (¢ € ©) the func-
tion ©/Q — ©/Q* defined by Qd — t71Qd = Q' 'd is a bijection
commuting with each Qgz;. The group of automorphisms Aut(Q) of Q
is isomorphic to the quotient group N (Stab,(w))/Stab,(w) (Singer-
man [25]). If Q is the stabiliser of w in ©, then Aut(Q) = N, (Q)/Q
(Zassenhaus [29], p.51). Definitions and results proved specifically for
A-marked hypermaps (that is, hypermaps) and A*-marked hypermaps
(that is, oriented hypermaps, see for instance [6, 7, 8]) can be adapted
to ®-marked hypermaps. For example, the group of automorphisms
Aut(Q) acts semi-regularly on Q giving the double inequality

|[Aut(Q)| < 9] < |Mon(Q)].

If Aut{Q) acts transitively (hence regularly) on 2, then we say that
Q is regular. As Aut(Q) = N, (Q)/Q and Q is equipotent to ©/Q,
@ is regular if and only if Q <« ©. Moreover, an equality on one side
of the above double inequalities implies an equality on the other side.
Consequently, the following are equivalent: (1) Q is regular (2) Q< O,
(3) [Aut(Q)| = |€2], (4) [Mon(Q)[ = [€].

5. ©-marked hypermaps versus ®-conservative hypermaps

Any O-conservative hypermap H = (F;rq,r1,72), with fundamental
subgroup H < O, gives rise to n ©-marked hypermaps

) o
Hy = (Fp 5T g1 ZTm| o)
Fb Fb
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one for each ©-orbit Fb6 . These special ©-marked hypermaps will be

called ©-hypermaps. Each ©-hypermap Hb@ will be called a “b-image”
of

e =]
H =(F ;1?1|Fe,...,.’rm|Fe).

The monodromy group of ’Hf is the ©-monodromy group of H on Fbe )

(S]
Mon(H, ) = (1] g2 Tm| o) =0 o = ©/H? = ©-Mony(H).
b b b

As @/Hg = 0O/H, = Mon(He) = (xl,Fe yeon ,xm,Fe), the ©-hypermap
H® and its b-images ’HS, b € T, all have the same monodromy group,
Mon(Hf) = Mon(He) .

However H'® may not be isomorphic to any of its b-images ’Hbe. IfH
is ©-regular this translates to “the two monodromy groups Mon(’Hbe)

and Mon(He) may not be monodromically isomorphic in respect to their
fixed set of generators; that is, the function z; o =z o,i=1,...,m,
F F,

b
may not extend to an isomorphism”. In the next theorem we shall show
that if H is O-regular then H® is isomorphic to all its b-images if and
only if H is A-regular.

THEOREM 13. A O-regular hypermap H is A-regular if and only
if for any b € T, the function ©) , — 0| 5, x| o + x| 4, Is an
F Fb F Fb

isomorphism.

Proof. (=) Let H be A-regular, which is the same as H < A. Then
the function

is well defined and injective; in fact,

1) o = T2 o & Vie O, Hitry = Htxo
Vte O, zyr! € H = H% (= H), since H< A,
YVt e O, Hbtry = Hbtxo

Tt ¢ 2

xllFe = $2|Fe .
b b

¢ is obviously onto. Since z|,y;, = (zy)|, the function ¢ is obviously a
homomorphism.
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(<) If, for any b € T, the function

: 0 — 0O
¢ () |Fb®

_...___) x
IFbe

xlpe

is an isomorphism then, in particular, it is well defined. As for each h €
H, the permutation h) , : F°— F@, Ht — Hth =tHh =tH = Ht,
F
is the identity permutation, then for any b € T,
l| o =M

Fy

< Vte O, Hbt = Hbth
& Vte®, he H*
= heH® bytakingt=1.

e
Fy

Therefore, H C H® for any b € T. As for any d € A, d = tb for some
beT and t € ©, then HY = H® = H® and so H C H? for any d € A.
Hence H < A. O

COROLLARY 14. A ©O-regular hypermap H is A-regular if and only
if for any orbit Fe, the function ©) , — ©) o, @y o — Ty o, for
F Fb F Fb

t=1,...,m, extends to an isomorphism.

COROLLARY 15. Let T = {1 = by,...,b,} be a transversal for © in
A. A O-regular hypermap H is A-regular if and only if the ©-hypermaps
'HZ, e ,HZL are all isomorphic (that is, if and only if H is isomorphic
to all its b-images).

More generally, replacing A by a normal subgroup II of A we get the
following more general result:

COROLLARY 16. If © < II < A (with both © <A and I1< A) and
T" = {1 = b,...,by} is a transversal for © in II, then a ©-regular-
hypermap is ll-regular if and only if the ©-hypermaps HZ, . ,an are
all isomorphic.

Although the ©-orbits of a ©®-conservative hypermap H all have the
same length, the action of © on them may not all be equivalent. Even
if H is ©-regular this may not be sufficient for © acting equivalently on
all ©-orbits. Let H be O-regular. For each b € T, the bijective function
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@, F RN Ff , Ht — Htb, induces a commutative diagram

F*x0 — F°

“p lid l‘)"b
F be X0 —— I be
if and only if H® is isomorphic to its b-image ’Hbe. By Corollary 15, ©
acts equivalently on all orbits if and only if H is A-regular. This proves:

THEOREM 17. Let H be a ©-regular hypermap. The action of © on
the ©-orbits are all equivalent if and only if H is A-regular.

Let b be an element of a transversal T for © in A. Being © normal in
A, the ©-orbit Fbe = {Hbt | t € O} can be written as the set ©/H -b =
{Htb |t € ©}. The conjugate H® is a subgroup of © and the set of right
cosets ©/H® = (©/H)® is equipotent to the set of right cosets ©/H,
which is equipotent to ©/H -b = Fbe . Hence the function

Hbt — H®

is a bijection from Fb6 to ©/HP Moreover, the right action Hbt -
:= Hbtr of Mon(HS) on F, is equivalent to the right action

Tl e
Fy
Hbt . Hg'r = H%r of @/Hg on ©/H® Hence the b-image HZ) =
Fe; Tl o3 %m is isomorphic to the ©-marked hypermap
b e le
b b

Q(H®) = (8/HY H'z1,...,Hl2p).

with ©-marked fundamental subgroup H®.

Reciprocally, if @ = (2 ; aq,...,04,) is a ©-marked hypermap, as
seen earlier Q is isomorphic to (0 /Q ; Q¢Z1,...,QeZTm) for some
O-marked fundamental subgroup @ < ©. Let H be the hypermap
(A/Q; QL Ro,QaR1,Q4R2), called here the A-form of Q. Then H
is ©-conservative and

(]
H = (@/rQa Q@xla o 7Qexm) = Q
LEMMA 18. Let Q and K be subgroups of © and let g € ©. Then
vy : ©LQ — ©/K, Qt — Kgt, is well defined if and only if @ C K.

THEOREM 19. Let Q@ = (0/Q ; QgZ1,...,RQe%m) and K = (0/K;
Kgz1,...,Kg2m) be two ©-marked hypermaps. Then Q covers K if and
only if Q < K9 for some g € ©.
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Proof. (=): If ¢ : ©/Q — O/ K is a function commuting the re-
spective actions, then Q¢ = Kg, for some g € ©. Then, for all t € O,
QtYy = QQutY = QYK t = Kgt, that is, ¢ = v,. By Lemma 18,
Q < K9.

(<): Reciprocally, if @ < K9, for some g € O, then v, as defined
by Lemma 18 is well defined and determines a covering @ — K. In
fact, @ < K9 implies that @y, < K, then for all £ € © and =z €
{z1,..., 20}, QtQgxyy = Qtxyy, = Kgtzx = KgtKoz = Qty,K,.
Hence v, commutes with both actions . O

Let @ = (0/Q; Qoz1,. .., Qe®m) be a ©-marked hypermap with ©-
marked fundamental subgroup Q. As seen above, Q = 'He, where H =
(ALQ; QA Ro, Q. R1,Q, R2) is its A-form, a ©-conservative hypermap
with fundamental subgroup Q. Hence Q is regular if and only if its A-
form H is O-regular. If the ®-marked fundamental subgroup ) is normal
in A, we say that Q is A-symmetric. More generally, if ¢ is normal in
some normal subgroup IT in A, we say that Q is II-symmetric. So a ©-
marked hypermap is A-symmetric if and only if it has a regular A-form
hypermap.

Let us consider the two following ©-marked hypermaps:

Q= (9/Q%Q z1,...,Q z) (the b-image of Q)
and .
—1 —
Q"= (0/Q; Q0 - Qo )

THEOREM 20. Qp = QP.

Proof. The function 1 : 0/Q" — ©/Q = G)b_l/,Q defined by
Qbt — Qt*™" is bijective and for all t € © and i € {1,...,m} it sat-
isfies

QtQhray = Qtrithy = Q(tz)* = QT = Q' Qqal

[

COROLLARY 21. Let Q be a regular ©-marked hypermap. Then Q
is A-symmetric if and only if @ = Qb, YbeT.

The last theorem of this section will be of great help in the construc-

tion of regular ©-marked hypermaps from given groups.

THEOREM 22. If G is a group generated by g1, ...,gm such that the
function p : x; + g; extends to an epimorphism from © to G, then
Q= (G;91,...,9m) is a regular ©-marked hypermap.
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Proof. As G acts transitively on itself by right multiplication then Q
is a ©-marked hypermap. Moreover, the stabiliser of any element of G is
trivial. Let Q@ = Ker(p) = p~1(1) = Stab, (1) under the action of © on
G via p. Then Q<0O, G2 O/Q and Q = (0/Q; Qx1,...,Qxy). Hence
Q is regular. O

6. O-slices

Any hypermap can be topologically constructed by stitching trian-
gular pieces of surface, called flags, following the rule dictated by the
monodromy group [4, 17, 19, 20]. If the hypermap is orientable, one can
use the orientability to reduce the number of surface’s pieces by taking
larger pieces, called darts, constructed by gluing two adjacent flags along
their side labelled 2 (see Fig. 3). This approach can be brought to any
©-marked hypermap. The resulting building blocks will be called ©-
slices. The “shape” of such a region is not unique, but differs according
to the Schreier transversal considered for ©.

Let T = {by = 1,...,b,} be a Schreier transversal for © in A. As-
sociated with T we construct a ©-slice, in fact a rooted G-slice, in the
following way. Fix a flag w, a topological triangle similar to the one
displayed in Fig. 1 (left), with their three sides labelled 0, 1, 2 and their
corresponding opposite vertices labelled similarly. The side labelled 2,
lying on the underlying hypergraph, will be drawn thick while the other
two (lying inside of hyperfaces) will be dashed. To get some geometrical
meaning we do this on the hyperbolic plane H, modelled by the Poincaré
disc. Here a flag is a hyperbolic triangle with internal zero angles. Let
Ry, R; and Ry be the usual reflections on the sides labelled 0, 1 and 2
respectively. They generate a group isomorphic to the “triangle” group
A. Each element b; € T is a word in Ry, R, Ko, so wb; is an isometric
flag in H. The region {, = U{wb | b € T}, which is connected since T
is a Schreier transversal, is our starting rooted ©-slice (associate to T')
with root flag w. Fig. 1 (right) displays a rooted ©-slice, where © is the

subgroup A0l = (Ra, (R()Rl)z)A of A.

Figure 1: Left: a flag. Right: A rooted AOi—slice, consisting of 4 flags.
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The set of root ©-flags is S, = {(ut | t € O} with root-flags wt, t € O.
The group © acts regularly on S, by acting on the root-flags wt, giving
rise to a ©-tessellation 7 of H by rooted ©-slices (Fig. 2).

Figure 2: Part of the A tessellation in H.

One can choose any other flag o’ = wb (b € T') of (, to be a (starting)
root-flag; in fact, 7/ = b71T is also a Schreier transversal for © (see

lemma below) and CZ,I = Q::, S0 (Z,l represents the same O-slice with
root-flag w’ (yet associated to T”). Therefore, choosing another flag for
root-flag is equivalent to associating the ©-slice with another Schreier
transversal.

LEMMA 23. If T = {1 = by,...,by} is a Schreier transversal for ©
in A, then for i = 1,...,n the set b;'T = {b;by,...,b;  b,} is still a
Schreier transversal for © in A.

Proof. The function €, : b, 17— T, x — bz, is a bijection. Hence
b71T| = |T|. On the other hand, for all b,¥’ € T, ©b;'b= 0b; 'V <
b710b =510V < Ob = OV © b =1V & b;7'b = b, 1. Hence b7 T is
a transversal and contains 1. Let w € bi_lT such that w = wv. Then
b;w = byuv € T, and since T has the Schreier property, bu € T < u €
b, 17, Hence b, 17 is also a Schreier transversal. O

Each ©-slice { = U{wb | b € T} in H is a union of n (the index of
© in A) flags, each belonging to a different ©-orbit. This gives rise to
n coloured flags in ¢, inducing n colourings (or roots) to the G-slices.
Choosing a root colour (or root-flag w) then the action of © on the
coloured-flags will fix a root-flag in each ©-slice giving rise to a set of n
coloured rooted O-slices S,,. Figure 3 shows ©-slices for some familiar
subgroups © in A with abelian factors, namely, © = A, © = At,

© =A% = (Ry, Ry)® and A"2 = (RyR1R,)".
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|

/

Figure 3: A-slice (or flag), A*-slice (or dart), AD_slice and A" 2-glice.

Of course different subgroups © of finite index in A may share the
same O-slice when taking appropriate Schreier transversals. For exam-
ple, A = (Ry, Rle)A, of index 2, may also induce the same A% -slice,
0 = A% = (R (ReRy)2)", AT0 = A*n A% and A2 = A*NAZ all of
index 4, may also induce the same A% 2-slice. For more details on these
groups and the regular hypermaps associated to them see [5].

Let Q be a ©-marked hypermap with @-marked fundamental sub-
group . Being @} a subgroup of ©, @ also acts on the rooted G-slices.
This determines a fundamental region R C H, which can be seen as
a regular hyperbolic polygon divided into rooted ®-slices. The orbit
space H/Q, which corresponds to the polygon R with their sides pair-
wise identified, carries a ©-conservative hypermap H (also divided into
rooted O-slices) as an imbedding of the hypergraph determined by the
thick lines of the induced tessellation 7 on R. The induced (topological)
©-conservative hypermap H is clearly isomorphic to @ (in respect to the
induced root flags). The choice of another root flag in H determines a
b-image of H. When @Q is A-symmetric (i.e., its A-form is regular), then
the choice of a root flag in H becomes irrelevant. In this case we may
discard the root flags and consider ©-slices instead of rooted O-slices.

7. An example

Consider the subgroup A% = (R2,R§°,R§1,R§°R1,(ROR1)2) with
index 4 in A. This is one of the seven normal subgroups with index
4 in A [6]. It is isomorphic to a free product Cy * C2 x Co x Cy *
Cx = (A,B,C,D,Z). Associated to the Schreier transversal T =
{1, Ry, R1, RoR;} for A% in A, we have the rooted A%-glice shown
in Fig. 1 (right). ,

Let us consider the Klein four group V4 and let Q be the regular
A% _-marked hypermap (Va,a,b,c,d,z), where Vy = (a,b), ¢ = ab and
d =z =1b. To construct Q as a cellular embedding of a hypergraph in
some surface S, take 4 rooted A®l-slices numerated as 1, 2, 3 and 4.
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Figure 4: Four rooted A0l _glices.

Since 1a, lab and laba are different Af’i—slices, without loss of generality,
assign 2 = la, 3 = 2b and 4 = 3a. Since ¢ = (ror2)? is an involution, we
must have these slices joined partially as shown in Fig. 5.

Figure 5: A partial joining of A% glices.

Now the equation ¢ = ab applied to the root flags implies A5 = A13
and A6 = Al4. The equation z = b on the root flags is equivalent
to r1° = ri%r1 on root flags, and this implies A3 = A15, A8 = Al2,
Al16 = A4 and A11 = A7. Similarly, d = z on the root flags is equivalent
to r1rg = rorire and this implies A1 = A2 and A9 = A10. The final
picture is shown in Fig. 6.

Figure 6: The cellular hypergraph embedding of Q.

The A-form of Q is AOi—regular.
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8. O-regularity as a regular covering

The trivial ©-hypermap 7 , that is, the regular hypermap with fun-
damental subgroup ©, is the smallest ©-conservative hypermap. Its
flag’s set is the quotient A/© and hence the number of flags of 7 is the
index of © in A. If a hypermap H is ©-conservative, its fundamental
subgroup H is a subgroup of © and so we have a covering p : H — T
given by p: A/H — A/®, Hd — ©d. The size of 7, can be seen as the
number of ©-orbits in H. The covering p is regular if H < ©, that is, if
H is O-regular, in which case the covering group is given by ©/H.

Let T = {by = 1,b2,...,by} be a transversal for © in A. Being H
©-conservative then each ©-orbit FS = {Hbit |t € O} in H is a “fiber”

(©b;)p~!; in fact,
(Ob)p~! = {Hde A/H|©d=0b}
— {Hth; € A/H |t €O}
= {Hbt' e AJH |t =b'th =t € 6}
= F,.
The function ¢ : (©d)p~! — ©p~! = O/H, Hg — Hgd™!, is a bijec-
tion from any fiber (©d)p~! to the “main” fiber ©p~' = ©/H. This

confirms an earlier result saying that any two ©-orbits have the same
length.

9. O-type and characteristic of a ®-regular hypermap

Let H be a O-regular hypermap. The ©-automorphism group Aut’ (H)
acts regularly on any ©-orbit. For each hypervertex v of H, denote by
F, the set of flags incident with v. The “©-stabiliser”

E° =Stab F.
Fu Aut@(u)( )

is a subgroup of (ry,r2) C Aut® (H) (which is cyclic or dihedral). Since
Ei) is a subgroup of Aut® (H) it acts regularly on the subset of flags wON
F, of each ©-orbit w® meeting v. Then |WONF,| = |E‘2v | and hence part
(1) of the next theorem is established. Since automorphisms preserve
incidence, any automorphism % can be seen as a function that sends

i-hypercells (0-hypercells=hypervertices, 1-hypercells=hyperedges and
2—hypercells=hyperfaces) to i-hypercells. Moreover, incidence shows
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that for any hypercell ¢, Fip = Foy. So if ¢ is a ©-automorphism then
for any flag w, wO¢ = wO and so, for any hypervertex v,

(WONF)p =wONF,,.
This helps to finish the proof of the following theorem.

THEOREM 24. Let ‘H be a ©-regular hypermap.

(1) If two ©-orbits meet in one hypervertex v (resp. hyperedge, hyper-
face), then they both meet v with |E§U| flags.

(2) Let w® be a ©-orbit meeting two different vertices v and v. If w©
meets u with k flags, then w®© also meets v with k flags.

(3) If two ©-orbits meet in one hypervertex (resp. hyperedge, hyper-
face), then they will meet at exactly the same hypervertices (resp.
hyperedges, hyperfaces).

Proof. (2) The transitivity of Aut® (H) on ©-orbits implies that

there is ¢ € Aut’ (H) such that u¢ = v. Then (WO N F,)p = wO N F,
and so wO N F,| = |wONEF,|=k.

(3) Let w10, w20 be two O-orbits meeting the hypervertex u. Without
loss of generality we may suppose that wy,ws € Fy,. If w;© meets another
hypervertex v, then the transitivity of Aut® (H) on ©-orbits implies that
there is ¢ € Aut” (H) such that u¢ = v. Then (w2ONF,)p = wONE, #
0, that is, wo© also meets v. O

Two distinct ©-orbits may meet different numbers of hypervertices
(resp. hyperedges, hyperfaces). However, in a ©-regular hypermap ©-
orbits lie inside Aut(H)-orbits, and so, if two distinct ©-orbits lie inside
the same Aut(H)-orbit then the following result says that despite they
may not meet the same hypervertices they will meet the same number
of hypervertices.

THEOREM 25. Let ‘H be a O-regular hypermap and wi e wy be two
flags in the same Aut(H)-orbit. Then the ©-orbits w1© and w2© meet
the same number of hypervertices (resp. hyperedges, hyperfaces) with
the same number of flags.

Proof. This is a consequence of w0 = w190, for any automorphism
¢ € Aut(H). In fact, since wy and wy belong to an Aut(H)-orbit, there
is ¥ € Aut(H) such that we = wyp. If w1© meets the k hypervertices
V1,...,Vk, SO V1,..., Uk are all the hypervertices such that w;ONF,, # 0,
for any i =1,...,k, then also (w10 N Fy,)Y) = we© N Fy,y # 0. Since 9
is invertible, u1%, ..., ux1 are all the hypervertices that wo© meets. By
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Part (2) of Theorem 24, the sets w1©® N Fy,, i = 1,...,k, all have the
same cardinality, thus so do the sets wy© N F, . fori=1,... k. O

Consider the regular covering p : H — 7,. As we saw in §8, each
©-orbit is a fiber (©b;)p~ 1. Let v be a hypervertex of 7, and w a flag in
v. The valency of v divides the valency of each hypervertex v; € {v}p~*
in ‘H that projects over v. The ©-orbit {w}p~! meets every hypervertex
of {v}p~!, hence, by Theorem 24, all the hypervertices in {v}p~! share
the same valency. Similarly, all the hyperedges (resp. hyperfaces) in H
that cover an hyperedge (resp. hyperface) of 7, share the same valency.

Let {v1,...,vq,}, {€1,..-,€q} and {f1,..., fg, } be the hypervertices,
hyperedges and hyperfaces (respectively) of the trivial ©-hypermap 7
and (k;l;m) be the type of 7; so gy, qe and ¢y are the number of hy-
pervertices, hyperedges and hyperfaces of 7, respectively. Let V; =
{v;}p7!, & = {e;}p~! and F; = {f;}p~! be the sets of hypervertices,
hyperedges and hyperfaces of H projecting via p to v;, e; and f; respec-
tively. These have common valencies respectively k;, {; and m,;. Notice
that k divides each k; (1 = 1,...,qy), l divideseach [; (i =1,...,¢.) and
m divides each m; (i = 1,...,¢y). The following sequence

(K1y oo eskgys lyeeeylge s may .o ymgy)

will be called the ©-type of H. The g, hypervertices (resp. g hyperedges
and gy hyperfaces) of 7, give rise to ¢, 0-colours (or vertex-colours)
among the hypervertices of H (resp. ge 1-colours and gf 2-colours). The
underlying hypergraph G of H is then “(gy, ge)-coloured”, that is, as a
bipartite graph it is a (g, + ge)-vertex coloured graph.

9.1. Characteristic of a ©-regular hypermap without bound-
ary

Denote by V = UZ,V;, £ = U & and F = UL, F; the sets of
hypervertices, hyperedges and hyperfaces of H. Then Y . |V;| = |V,

% 1&) = |€] and ¥ [ |F:| = |F|. As all the hypervertices in V;
have the same valency k;, and H has no boundary, then we have 2k;|V;|
flags lying on V;. On the other hand, the hypervertices of V; project
over v; and around v; we have uyk flags, where u, = 1 if v is on the
boundary of 7, and p, = 2 if not. Then the number of flags lying
around the vertices of V; must also be given by u,k |© : H|; that is,

Zki’Vﬂ = ,uvk|6:H|.



A theory of restricted regularity of hypermaps 1013

Analogously we define the numbers p. for hyperedges and ¢ for hyper-
faces, with similar formulas

2li |5Z| = ,uel|® . H’,
2ml|.771| = ufm]@:H|.
As |F| =n|© : H| then the characteristic x of H is given by
x(H) = |+ I€] + |7 - &

= YE W+ SE 8+ S8 |F - UEH

_ Qv v k|O:H| ge B l|® H| q5 ,ufm|@ H|  n|©:H|
= 2 TR T i +2 2 2

2my;
v k l af Hym
= [0: Hl( gt iy + e - %)
For ©-regular hypermaps of negative characteristic N = —x > 0, this

formula permits the evaluation of an upper bounding for lAute (H)| =
|© : H|for each ordering of {k1,...,kg,, l,...,lg, ma,...,mg; }. Choos-
ing the highest upper bounding on all possible orderings (the number
of orderings is finite), we get the following kind of “Riemann-Hurwitz”
bound:

THEOREM 26. For each N > 0, there is ¥, < 3 such that

N
- X

|Aut” (H)] <

(S

e
for any ©-regular hypermap H.

For example, for © = A the bound is 84N, for ® = AT the bound is 42N
(the Hurwitz bound 84(g — 1) as it is known, where g is the genus), for
© = A the bound is 24N and for © = A%'? the bound is 6N. Since any
©-regular hypermap is fully determined by its ©-automorphism group
we have,

COROLLARY 27. For each © and for each N > (O the number of ©-
regular hypermaps of negative characteristic N is finite.

In other words, given a regular hypermap 7, the number of hypermaps
H of given negative characteristic N > 0 that regularly covers 7 is finite.

10. Restrictly regular hypermaps

We say that a hypermap H is restrictly regular if H is ©-regular for
some normal subgroup © with finite index in A. The restricted rank r
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of a restrictly regular hypermap is the index r of the greatest normal
subgroup © in A such that H is ©-regular. Restricted rank 1 means
that H is A-regular, or simply regular. Let the restricted co-rank of a
hypermap H to be the quotient |F|/r; this is the ©-orbit’s length of a
©-regular hypermap of restricted rank r = |A : ©|. As the length of a
©-orbit of a ©-regular hypermap H must divide |Aut(H)|, which is the
length of an Aut(H)-orbit, we have:

LEMMA 28. The restricted co-rank of a restrictly regular hypermap
H must be a divisor of |Aut(H)|.

For example, if H is not regular and has trivial automorphism group
then H cannot be restrictly regular. In fact, if H is ©-regular for some
© < A, since Aut’ (H) < Aut(H) then |©/H| = |F°| = |Aut® (H)| = 1,
where H is the fundamental subgroup of H. So H = © and H is regular,
which is against our assumption. Examples providing larger automor-
phism groups is given by the following theorem, where hyperfaces can
be replaced by hypervertices or hyperedges.

THEOREM 29. Let H be a hypermap with a hyperface A of valency m
and another B of valency n. If m and n are coprimes, and the rotation
one step about A or B is not an automorphism of H, then ‘H cannot be
restrictly regular.

Proof. Since 'H is not regular the automorphism group Aut(H) acts
with at least 2 orbits in the set of flags F of H. Suppose that H is
O-regular for some normal subgroup © of finite index in A. Let H be
the fundamental subgroup of H and let 5 = H € F = A/H be a flag
in A. Since H is ©-conservative, H C O, and since ((rgr;)™ = G, that
is, HH,(RoR1)™ = H, then (RyR:)™ € H, and so, (RgR1)™ € ©.
If y = Hd € F is a flag in B then y(ror;)" = 7, which implies that
(RoR1)™ € H? ¢ ©. Now ged(m,n) = 1, so there are integers p, ¢ such
that pm 4+ gn = 1, and so, RoRy = (RoR1)P™(RoR1)™™ € ©. Now the
O-regularity of H implies that Aute(H) acts regularly on both ©-orbits
£O and vO. Since © contains RyR;, this means that the rotations one
step on both hyperfaces A and B are automorphisms of H, which is
against our hypothesis. 0

COROLLARY 30. If M is a regular map of type {p, g} with ged(2p, q) =
1, then the truncated map T'M is not restrictly regular.

Proof. TM has two type of faces, the face-faces (faces originating
from the original faces) of valency 2p and the vertex-faces (faces origi-
nating from the vertices) of valency q. The rotation one step about a
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face-face cannot be an automorphism of T'M since it takes a face-face
to a vertex-face with different valency. O

It is therefore reasonable to ask when a given hypermap H is, or is not,
restrictly regular. Let H be a hypermap with fundamental subgroup H.
The normaliser N, (H) gives rise to a not necessarily regular hypermap
N, call it the normaliser of H. The hypermap H regularly covers N,
with covering transformation group N, (H)/H = Aut(H). Denote by
H the regular hypermap with fundamental subgroup ® = (N, (H ))A.
This group ®, which we will call the regularity-subgroup of H, is the
greatest normal subgroup © in A such that H has the possibility to be
O-regular. If H is regular, then ® = A and consequently A/® is trivial.
Note that ® is a subgroup of N,(H), so if H < & then H < ® and

&/H = Aut” (H) < Aut(H).

THEOREM 31. ‘H is restrictly regular if and only if the regularity-
subgroup contains the fundamental subgroup . Moreover, if ‘H is re-
strictly regular then the regularity-subgroup ® is the greatest normal
subgroup © with finite index in A such that H is O-regular, and hence,
H has restricted rank |A : @|.

Proof. If 'H is ©-regular for some normal subgroup © (with finite
index) in A, then H C © C N, (H). As © A then © C (N, (H)), and
hence H C (N, (H)),.

Conversely if H C (N,(H)),, since H AN, (H) and (N, (H)), <
N,(H), then H < (N,(H)), and H is O-regular for © = (N, (H)),,
which is a normal subgroup of A with finite index. [

Not every hypermap is restrictly regular, in other words, not every
hypermap regularly covers a regular hypermap. As mentioned earlier,
if ‘H has trivial automorphism group then N,(H) = H and so, & =
(N,(H)), =H,. If H# A, then H strictly contains H, and H is not
restrictly regular.

Of the 14 automorphism types of edge-transitive maps classified by
Graver and Watkins [15], see also [27], 11 correspond to restrictly regular
maps, namely: type 1 corresponds to A-regularity; types 2, 2%, 2%, 2ex,
2*ex and 2F correspond to AC-, A2- Al ég-, A% and A*-regularity of
restricted rank 2; type 3 corresponds to L}OQ—regularity of restricted rank
4; types 5, 5* and 5F correspond to A10- At2. and A2 regularity of
restricted rank 4.



1016 Antonio Breda D’Azevedo

The Buckminsterfullerene (or buckyball), the prototypical member
Cgo of a family of highly symmetrical carbon-cage molecules whose dis-
covery has led to the 1996 Nobel Prize in Chemistry, can be modelled as
a truncated Icosahedron. As the Icosahedron is a regular map of type
{3,5} and ged(3,10) = 1, Theorem 30 says that the buckyball is not
restrictly regular. This apparent contradiction to its highly symmetrical
shape has an explanation. We have been representing a hypermap as a
bipartite map. However, traditionally a hypermap H has been defined as
a cellular imbedding of a 3-valent graph G whose faces can be 3-coloured
in such a way that they all meet at each vertex. The vertices of G is the
set of flags and the 3 coloured faces make up the hypervertices, hyper-
edges and the hyperfaces of H. The bipartite map representation arises
when the 0- and 1- faces (the coloured faces that represent the hyperver-
tices and hyperedges, respectively) shrink to points, the vertices of the
bipartite map. If H is a map, we can shrink the 1-faces, “rectangles”
like faces, to edges. The buckyball, or the truncated icosahedron, seen in
this way represents the map Icosahedron as an imbedding of a 3-valent
graph whose 1-faces were shrinked to edges. In this view, the buckyball
is a regular hypermap.

The cellular graph imbedding (or map) appearing in Picture 10 of
page 405 of Burnside monograph [11], is clearly not regular, but, unlike
the buckyball, it is restrictly regular. Redrawing the map in the Riemann
sphere, or inserting oo to form a l-compactification of the plane, the
Burnside’s map becomes the picture shown in Figure 7(a).

Figure 7: A sphere with n (even) sections with an equatorial rim.

Burnside considered only the darker regions to represent a dihedral
group D%. Let us assume n either even or odd and let M be the
map. The automorphism group of M is a direct product D, x Cs that
acts with 3 orbits, the white, dark and grey flags (Fig. 7(b)). Hence
the restricted rank r shall be greater than 3. If n is odd, we have two
vertices whose valency are coprime. Since the rotation one step about
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an equatorial vertex is not an automorphism of M, by Theorem 29,
M is not restrictly regular. If n is even, let us show that M is re-
strictly regular with restricted rank 6. The number of flags is 12n and
each Aut(M)-orbit has 4n = |Aut(M)| flags. By lemma 28, the re-
stricted co-rank s must divide properly 4n, i.e., s # 4n; the highest
possible value is obtained when s = 2n, giving a possible value of 6 for
its rank . The normal closure © = (Ry, (RoR1)3)" has index 6 in A and
since Ry, RE®, (RoR2)? = REORy, R®' (R Ry)? = RE' Ry, (R1Ry)* € 6,
it is not difficult to see that M is O-conservative. As a O-orbit lies
inside an Aut(M)-orbit (Fig. 7(c)), Aut®(M) acts transitively on a
©-orbit, so M is O-regular. Hence M is restrictly regular with re-
stricted rank 6. Note that by Riedmeister-Schreier’s Rewriting Process,
© = (A,B,C,D,E,F,Z) 2 Cy x Cy % Cy x Cy * Cg * Cy * Cy, where
A =Ry, B=Rf°, ¢ =Rl p_ pliifo g _ gl p_ gk
and Z = (RoR1)?. The regular ©-marked map induced by H is Q =
(D% x Cy;a,a,c,d, c,c, 1), where Dy = (c,d| P =d?=(cd)? =1) and
02 = (a)

Meanwhile, we may see the dark and white regions as dark and white
flags. In this way Fig. 7(a) is a regular map on the sphere with two
vertices (the poles), without the equatorial rim. Burnside’s view cor-
respond to the oriented version of this, a regular oriented map with
dihedral automorphism group.
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