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GEOMETRY OF CONTACT STRONGLY
PSEUDO-CONVEX CR-MANIFOLDS

JoNGg TAEK CHO

ABSTRACT. As a natural generalization of a Sasakian space form,
we define a contact strongly pseudo-convex CR-space form (of con-
stant pseudo-holomorphic sectional curvature) by using the Tana-
ka-Webster connection, which is a canonical affine connection on
a contact strongly pseudo-convex CR-manifold. In particular, we
classify a contact strongly pseudo-convex CR-space form (M, n, ¢)
with the pseudo-parallel structure operator h(= 1/2L¢¢), and then
we obtain the nice form of their curvature tensors in proving Schur-
type theorem, where L¢ denote the Lie derivative in the character-
istic direction £.

1. Introduction

A contact manifold (M,n) is a smooth manifold M?"*+! together with
a global one-form 71 such that n A (dn)™ # 0 everywhere on M. It means
that dn has a maximal rank 2n on the contact distribution (or sub-
bundle) D(= kernel of n). This fact arises naturally the characteristic
vector field £ on M, and then leads to the decomposition TM = D& {¢}.
Given a contact structure 7, we have two associated structures. One is
a Riemannian structure (or metric) g, and then we call (M;7, g) a con-
tact Riemannian manifold. The other is an almost CR-structure (n, L),
where L is the Levi form associated with an endomorphism J on D
such that J? = —I. In particular, if J is integrable, then we call it the
(integrable) CR-structure. The associated almost CR-structure is said
to be pseudohermitian, strongly pseudo-convez if the Levi form is her-
mitian and positive definite. We call such a manifold a contact strongly
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pseudo-conver almost CR-manifold. There is a one-to-one correspon-
dence between the two associated structures by the relation

g=L+n®n,

where we denote by the same letter L the natural extension of the Levi
form to a (0,2)-tensor field on M, that is, i¢L = 0, where i denotes the
interior product by £. We also denote by ¢ the natural extension of J,
which means that p|p = J and @£ = 0. Then the above correspondence
may be rephrased by the relation between (7, g) and (n, ). From this
point of view, we have two geometries for a given contact manifold, that
is, one is formed by the Levi-Civita connection V, the other is derived by
the Tanaka- Webster connection @, which is a canonical affine connection
on a strongly pseudo-convex CR-manifold.

The normality of a contact Riemannian structure is defined in [13]
(see, section 2). A normal contact Riemannian manifold is called a
Sasakian manifold. A Sasakian structure has another picture, namely, a
contact strongly pseudo-convex CR-structure whose characteristic vec-
tor field is a Killing vector field with respect to its associated Riemannian
structure. In this context, we have two sides for a Sasakian space form:
one is defined by a Sasakian manifold with constant yp-holomorphic sec-
tional curvatures with respect to V and the other is of constant pseudo-
holomorphic sectional curvature with respect to V. Indeed, in [8] we
defined a contact Riemannian space form which extends a Sasakian
space form in the Riemannian view point. Corresponding to that, in
this paper we introduce a notion, say, a contact strongly pseudo-convez
CR-space form, which is a contact strongly pseudo-convex CR-manifold
M of constant pseudo-holomorphic sectional curvature ¢ (with respect
to @), that is, M satisfies for any unit vector field X orthogonal to &

L(R(X,eX)pX, X) = c (constant).

The main purpose of this paper is to find a proper class of con-
tact strongly pseudo-convex CR-space forms (containing Sasakian space
forms) and to study their geometric properties.

In particular, a contact strongly pseudo-convex CR-manifold satisfies
CR-integrability or the condition of n-parallel ¢ (that is, g((Vx¢)Y, Z)
= 0 for all vector fields X,Y, Z orthogonal to £). We note that it is also
equivalent to the condition of pseudo-parallel ¢ which is defined by

L((ﬁX(P)Ya Z)=0
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for all vector fields X,Y, Z orthogonal to £. Here, it is remarkable that
the normality of a contact Riemannian structure implies the integrabil-
ity of the associated CR-structure. But the converse does not always
hold. In fact, there are some examples of contact Riemannian mani-
folds which have integrable CR-structures but are not Sasakian. Other
than all 3-dimensional contact Riemannian manifolds ([17]), we see that
their associated CR-structures are integrable for (non-Sasakian) contact
(k, p)-spaces (cf. [3], [8]). This class was introduced in [3] and their
spaces are studied intensively in [4], [5] and [9]. In particular, their local
classification is given in [5].

We restrict our attention to a more suitable class of contact strongly
pseudo-convex CR-manifolds endowed with an additional property, na-
mely, it is imposed by the condition of pseudo-parallel h:

L((Vxh)Y,Z) =0

for all vector fields X,Y, Z orthogonal to &, where i denotes, up to a
scaling factor, the Lie derivative of ¢ in the direction of £. As concerns
this condition, we note that it is also equivalent to m-parallel A (with
respect to V), ie., g((Vxh)Y,Z) = 0 for all vector fields X,Y, Z or-
thogonal to . Recently, E. Boeckx and the present author [6] proved
that a contact Riemannian space with n-parallel h is either a K-contact
space (in which case, h vanishes identically) or a (k, p)-space. A contact
strongly pseudo-convex CR-manifold with pseudo-parallel h is called a
pseudo-parallel contact strongly pseudo-conver CR-manifold, or shortly,
a pseudo-parallel contact CR-space.

In Section 2, we collect preliminary notions and results which are
needed in later sections. In Section 3, we study the Tanaka-Webster
curvature tensor R of a contact strongly pseudo-convex CR-manifold. In
Section 4, we classify a pseudo-parallel contact strongly pseudo-convex
CR-space form. In more detail, a pseudo-parallel contact strongly pseu-
do-convex CR-space of constant pseudo-holomorphic sectional curvature
¢ is pseudo-homothetic to one of the following: (1) the (normalized)
model spaces of Sasakian space forms, (2) the unit tangent sphere bundle
of a space of constant curvature —1, or (3) a non-Sasakian Lie group with
a special left-invariant contact metric, SU(2), SL(2, R), the group E(2)
of rigid motions of Euclidean 2-space, the group E(1,1) of rigid motions
of the Minkowski 2-space (Corollary 4.3). It is remarkable that the case
(2) above is neither Sasakian nor a space of constant y-holomorphic
sectional curvature.
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In Section 5, we obtain the curvature form of a contact strongly
pseudo-convex CR-manifold with constant pseudo-holomorphic sectional
curvature. Finally, in Section 6, for the class of pseudo-parallel contact
strongly pseudo-convex CR-manifolds, we prove a Schur-type theorem.
Then we have the nice form of the curvature tensor of a pseudo-parallel
contact strongly pseudo-convex CR-space form.

2. Preliminaries

We start by collecting some fundamental materials about contact Rie-
mannian geometry and contact strongly pseudo-convex CR-manifold.
We refer to [2] for further details. All manifolds in the present paper are
assumed to be connected and of class C'*°.

A (2n+ 1)-dimensional manifold M?7*! is said to be a contact mani-
fold if it admits a global one-form 71 such that n A (dn)™ # 0 everywhere.
Given a contact form 7, there exists a unique vector field &, called the
characteristic vector field, satisfying dn(€, X) = 0 and n(¢) = 1 for any
vector field X. It is well-known that there also exists a Riemannian
metric g and a (1, 1)-tensor field ¢ such that

(X, 9Y) = g(X,Y) = n(X)n(Y),

(2.1) dn(X,Y) = g(X, ¢Y),
P’ X = —X +n(X)E,

where X and Y are vector fields on M. From (2.1), it follows that

(2.2) e& =0, nop =0, n(X) = g(X,§).

A Riemannian manifold M equipped with structure tensors (7, g) satis-
fying (2.1) is said to be a contact Riemannian manifold or contact metric
manifold and it is denoted by M = (M;n, g). Given a contact Riemann-
ian manifold M, we define an operator h by h = %Lgcp, where L denotes
Lie differentiation. Then we may observe that the structural operator h
is symmetric and satisfies

(2.3) he =0, hp=—ph,

(2.4) Vxé = —pX — phX,
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where V is Levi-Civita connection. We denote by R the Riemannian
curvature tensor defined by

R(X,Y)Z =Vx(VyZ)-Vy(VxZ) - VixvZ

for all vector fields X,Y,Z on M. Along a trajectory of &, the char-
acteristic Jacobi operator I = R(-,£)¢ is also symmetric. Moreover, we
have

(2.5) Veh = ¢ — ol — ph?,

(26) g(R(X,Y)§,Z) = g(Vyw)X — (Vx)Y, Z)
' + g((Vyoh)X — (Vxph)Y, Z)

for all vector fields X,Y,Z on M. A contact Riemannian manifold for

which £ is a Killing vector field, is called a K-contact manifold. It is easy

to see that a contact Riemannian manifold is K-contact if and only if

h = 0. For a contact Riemannian manifold M, one may define naturally

an almost complex structure J on M x R by

d

30X, £ = (X — FE1(X) 2

where X is a vector field tangent to M, £ the coordinate of R and f a
function on M x R. If the almost complex structure J is integrable, M
is said to be normal or Sasakian. It is known that M is normal if and
only if M satisfies

[p, 0] +2dn® £ =0,

where [p, ¢] is the Nijenhuis torsion of ¢. A Sasakian manifold is also
characterized by the condition

(2.7) (Vxp)Y = g(X,Y)§ —n(Y)X

for all vector fields X and Y on the manifold and this is equivalent to
(2.8) R(X,Y)E = n(Y)X = n(X)Y

for all vector fields X and Y.

For a contact Riemannian manifold M = (M;n, g), the tangent space
Tp,M of M at each point p € M is decomposed as T,M = D, @
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{¢&}p(direct sum), where we denote D, = {v € T,M|n(v) = 0}. Then
D : p — D, defines a distribution orthogonal to £. The 2n-dimensional
distribution (or subbundle) D is called the contact distribution (or con-
tact subbundle). Its associated almost CR-structure is given by the holo-
morphic subbundle

H={X—iJX:X € D}

of the complexification TMC of the tangent bundle TM, where J = ¢|D,
the restriction of ¢ to D. Then we see that each fiber H, (x € M)
is of complex dimension n and H N'H = {0}. Furthermore, we have
CD = H ® H. We say that the associated CR-structure is integrable if
[H,H] C H. For H we define the Levi form by

L:DxD— F(M), LX,Y)=—dp(X,JY),

where F (M) denotes the algebra of differential functions on M. Then we
see that the Levi form is hermitian and positive definite, that is, the CR-
structure is strongly pseudo-convex, pseudo-hermitian CR-structure. We
call the pair (n, L) a strongly pseudo-convez, pseudo-hermitian structure
on M. Since dn(¢X,¢Y) =dn(X,Y), wesee that [JX,JY]|-[X,Y] e D
and [JX,Y]+ [X,JY] € D for X,Y € D. Furthermore, if M satisfies
the condition
[, J)(X,Y) =0

for X,Y € D, then the pair (n,L) is called a strongly pseudo-convex
(integrable) CR-structure and (M;n,L) is called a strongly pseudo-convex
pseudohermitian CR-manifold. It may be easily proved that the almost
CR-structure is integrable if and only if M satisfies the integrability
condition @ = 0, where @ is a (1,2)-tensor field on M defined by

(2.9) QX,Y) = (Vx)Y — g(X +hX,Y)§ +n(Y)(X + hX)

for all vector fields X, Y on M (see [17, Proposition 2.1]). Taking account
of (2.7) we see that for a Sasakian manifold the associated CR-structure
is integrable (cf. [12]).

Now, we review the generalized Tanaka- Webster connection ([17]) on
a contact strongly pseudo-convex almost CR-manifold M = (M;n, L).
The generalized Tanaka-Webster connection V is defined by

VxY = VxY +n(X)pY + (Vxn)(Y)E —n(Y) V¢
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for all vector fields X,Y on M. Together with (2.4), V may be rewritten
as

(2.10) VxY = VxY + A(X,Y),
where we have put
(2.11) A(X,Y) =n(X)pY +n(Y) (X + phX) — g(pX + phX,Y)E.

We see that the generalized Tanaka-Webster connection V has the tor-
sion

T(X,Y) =29(X, oY )¢ + n(Y)ohX — n(X)phY.

In particular, for a K-contact manifold (2.11) reduces as follows:
(2.12) AX)Y) =n(X)eY +n(Y)eX — g(eX,Y)E.

Furthermore, it was proved that

PROPOSITION 2.1 ([17]). The generalized Tanaka-Webster connec-
tion V on a contact Riemannian manifold M = (M;n,g) is the unique
linear connection satisfying the following conditions:

(i) Vn =0, V&€= 0;

(i) Vg =0;

(iii-1) T(X,Y) = 2¢(X, oY )¢, X, Y € D;

(iii-2) T(¢,¢Y) = —pT(,Y), Y € D;

(iv) (Vxo)Y =Q(X,Y), X, Y € TM.

The Tanaka-Webster connection ([14], [20]) on a nondegenerate (inte-
grable) CR-manifold is defined as the unique linear connection satisfying
(1), (i), (iii-1), (ili-2) and @ = 0 (CR-integrability). The metric affine
connection V is a natural generalization of the Tanaka-Webster connec-
tion. In fact, in [1] the authors treat the use of V in the non-integrable
case.

From Proposition 2.1 we immediately see that the CR-integrability
condition @ = 0 is equivalent to the condition of pseudo-parallel ¢ (with
respect to V)

L((Vxp)Y,Z) =0

for all vector fields X, Y, Z orthogonal to £. Since we know that Ve =0
holds (cf. [2] p. 67) in a contact Riemannian manifold, we see further
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that CR-integrability is also equivalent to the condition of n-parallel ¢,
ie, g((Vxp)Y,Z) =0 for all vector fields X,Y, Z orthogonal to .
From (2.3), (2.10) and (2.11) we have

(Vxh)Y = (Vxh)Y + A(X,hY) — hA(X,Y)
(2.13) = (Vxh)Y + 2n(X)phY + g((oh + oh*) X, Y )¢
+n(Y)(phX + ph*X).
In [6] we studied a contact Riemannian manifold which satisfies the
condition that h is n-parallel (with respect to V), i.e., g(Vxh)Y,Z) =0

for any vector fields X,Y, Z orthogonal to £. Also from (2.13) we see
that this is equivalent to the condition that

L(Vxh)Y,Z) =0

for any vector fields X,Y,Z orthogonal to &, i.e., h is pseudo-parallel
(with respect to @) We call a contact strongly pseudo-convex CR-
manifold with pseudo-parallel h, a pseudo-parallel contact strongly pseu-
do-convex CR-manifold, or in short, a pseudo-parallel contact CR-space.
Here, we recall the notion of a pseudo-homothetic transformation (or
D-homothetic transformation) of a contact metric manifold ([15]). This
transformation means a change of structure tensors of the form

(2.14) n=an, E=1/ak, p=y, g=ag+ala—1)n®mn,

where a is a positive constant. From (2.14), we have h = (1/a)h. By
using the well-known formula

29(VxY,Z)=Xg(Y,2)+Yg(Z, X) — Z9(X,Y) — 9(X, [V, Z})
-9V, X, Z]) + 9(Z,[X,Y])

we have
(2.15) 6)(}/: VXy—l—E(X, Y),

where F is the (1,2)-type tensor defined by

E(X,)Y)=—(a-1)nY)eX +n(X)pY] - 9;—lg(sth,Y)f-
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REMARK 1. (1) From (2.14) and (2.15), we see that the condi-
tion of pseudo-parallel ¢ (or n-parallel ¢) is invariant under a pseudo-
homothetic transformation. Indeed by direct computations we have

(Vx@)Y = (Vx9)Y + (a = 1)n(Y)9*X — (a — 1)/ag(X, hY )¢

(2) The condition of pseudo-parallel h (or n-parallel h) is also invari-
ant under a pseudo-homothetic transformation. Namely, for a pseudo-
homothetic transformation we have

(VxR)Y =1 /a((Vxh)Y + (a— Un(Y)hoX + 2(a — Dn(X)heY

— (a—1)/ag(phX, hY)g).

3. The Tanaka-Webster curvature tensor of a contact CR-
manifold

Let (M;n, L) be a contact strongly pseudo-convex CR-manifold. In
this section, we define the Tanaka-Webster curvature tensor of R (with
respect to V) (in the extended meaning) by

(3.1) R(X,Y)Z =Vx(VyZ) ~Vy(VxZ) - Vixv|Z
for all vector fields X, Y, Z in M. Then we have
ProprosITION 3.1.

R(X,Y)Z =—-R(Y,X)Z,

9(R(X,Y)Z, W) = —g(R(X, Y)W, Z).

The first identity follows trivially from the definition of R. Since the
connection parallelizes the metric form, (i.e., ﬁg = (), we have also the
second one by a similar way as the case of Riemanian curvature tensor.
We remark that the Tanaka-Webster connection is not torsion-free, the
Jacobi- or Bianchi-type identities do not hold, in general. From (3.1),
together with @77 =0, @{ =0, @g =0, <7go = 0, the straightforward
computations yield

~

R(X,Y)Z |
= R(X,Y)Z +1(2)(pP(X,Y) + 9(A(X, hY) ~ A(Y,hX))

— Ph(A(X,Y) — A(Y, X)))
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— g($P(X,Y) + p(A(X, hY) - A(Y, hX))

~ Ph(A(X,Y) = A(Y, X)), Z )¢

—29(pX,Y)A(§, Z) — n(X)A(phY, Z) + n(Y)A(phX, Z)
—n(X)pAY, Z) + n(Y)pA(X, Z) + n(A(X, 2))(¢Y + phY)
—n(A(Y, Z2))(¢X + phX) + g(0X + phX, A(Y, Z))§

— g(pY + @hY, A(X, 2))¢.

We put P(X,Y) = (Vxh)Y — (Vyh)X, then we see that P is a (1,2)-
type tensor field on M. By using (2.1), (2.2), (2.3) and (2.11) we have

~

(3.2) R(X,Y)Z = R(X,Y)Z + B(X,Y)Z,
where
B(X,Y)Z
= 1(Z)pP(X,Y) - glpP(X,Y), 2)¢ = n(Z) (n(Y)(X + hX)

= n(X)(Y +hY)) +n(Y)g(X +hX, 2)¢ = n(X)g(Y + hY, Z)¢
+ 9(Y + phY, Z)(pX + phX) — g(pX + phX, Z) (Y + phY)
—29(pX,Y)pZ

for all vector fields X,Y,Z in M. From (3.2), by making use of (2.2)
and (2.3), we obtain

(33) R(X,Y)¢
' = R(X,Y)E+ oP(X,Y) +n(X)(Y + hY) — n(Y)(X + hX).

Now, we give

DEFINITION 3.2. Let (M;n, L) be a contact strongly pseudo-convex
CR-manifold with the associated Levi form L. Then M is said to be of
constant pseudo-holomorphic sectional curvature ¢ (with respect to the
Tanaka- Webster connection) if M satisfies

L(R(X,pX)pX,X) = ¢
for any unit vector field X L £. A complete and simply connected con-
tact strongly pseudo-convex CR-manifold of constant pseudo-holomor-
phic sectional curvature is called a contact strongly pseudo-conver CR-
space form.
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Here, we recall

DEFINITION 3.3 ([16]). Let (M;n, g) be a Sasakian manifold. Then
M is called a space of constant ¢-holomorphic sectional curvature cq if
M satisfies

9(R(X, X)X, X) =co

for any unit vector field X L & A complete and simply connected
Sasakian space of constant ¢-holomorphic sectional curvature is called
a Sasakian space form.

Now, we prove that

PROPOSITION 3.4. The contact strongly pseudo-convex CR-space
form is a pseudo-homothetic-invariant.

Proof. From (2.15), by long but tedious computations, we get
9(R(X, v X)pX, X)
= g(R(X, X)X, X) — (a — 1)[3 + g(hX, X)]

(3.4) _e-l

—[gphX, X)? + g(hX, X)(g(hX, X) ~ 1)]

L (a=D)?

g(hX, X)

for any unit horizontal vector X € D(p) (with respect to g), p € M. For
any unit horizontal vector X, from (3.2), we get

=3
Along with (2.14) and (3.4), we have

&

L(R(X,8X)@X,X) = aL(R(X, pX)pX, X).

If we denote by K(X,¢X) the pseudo-holomorphic sectional curvature
L(R(X,pX)pX, X) for a unit horizontal vector X, then this is rewritten
by

K(X,pX) = aK(X,pX).

Thus, we have proved. U

REMARK 2. Making use of (2.14) and (3.4) we can see that the
contact space of constant @-holomorphic sectional curvature is not a
pseudo-homothetic invariant, in general.
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4. Pseudo-parallel contact strongly pseudo-convex CR-space
form

We start this section by reviewing in brief a (k, u)-space. In [3], the
(k, u)-nullity distribution of a contact Riemannian manifold M, for the
pair (k, ) € R?) is defined by

N(k,p): p— Nylk, 1)
= {2z € T,M|R(z,y)z = (kI + ph)(9(y, 2)x — g(, 2)y)
for any z,y € T,M}.

A (k, u)-space is a contact Riemannian manifold with £ belonging to the
(k, p)-nullity distribution, that is,

(4.1) R(X,Y)§ = (kI + ph)(n(Y)X ~ n(X)Y),

where I denotes the identity transformation. It is proved in [3] that the
(k, p)-spaces are invariant under a pseudo-homothetic transformation in
the range of (k, ). More precisely, a pseudo-homothetic transformation
with constant a change (k, 1) into (k, i), where

kE+a%—-1 . pt2a-—2
2 M= a '

(4.2) k=

Also, the associated CR-structures of the (k, p1)-spaces are integrable,
that is, they are contact strongly pseudo-convex CR-manifolds. This
class contains Sasakian manifolds with ¥ = 1 and A = 0. The unit
tangent sphere bundle is a (k, u)-space if and only if the base manifold
is of constant curvature ¢ with k = ¢(2 — ¢) and p = —2¢ ([3]). (By
virtue of the result of Y. Tashiro [19], we know that for ¢ # 1, the
unit tangent sphere bundle is non-Sasakian.) In [4], [5] the curvature
tensor R of contact (k,u)-space is determined completely for £ < 1.
Furthermore, E. Boeckx [5] classified non-Sasakian (k, y1)-spaces up to a
pseudo-homothetic transformation.
In [3], the authors proved following useful formulas:

(Vxh)Y
(4.3) = [(1 = k)g(X, ¢Y) — g(X, phY)]¢
—n(Y)[(1 - k)X + phX] — un(X)phY
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and

P(X,Y) = (VxR)Y — (Vyh)X
(4.4) = (1= k)[29(X, oY )¢ + n(X)pY — n(Y)pX]
+ (1 = @) [n(X)phY — n(Y)phX].

Then from (4.3), we immediately see that a (k, u)-space has a pseudo-
parallel structure. Moreover, together with the result in [6] we have

THEOREM 4.1. A pseudo-parallel contact strongly pseudo-convex
CR-manifold is Sasakian or a (k, u)-space.

Now, from (3.2), we have for unit vector field X 1 &

A

L(R(X,pX)pX, X)

(4.5)
Hence, we see that M is of constant pseudo-holomorphic sectional cur-
vature c if and only if

K(Xa ‘»OXX: g(R(X7 ‘)OX)wX’X))

(4.6) — (c—3) + g(phX, X)? + g(hX, X)".

We prove

THEOREM 4.2. Let M be a contact (k,p)-space. Then M is of
constant pseudo-holomorphic sectional curvature c if and only if (1) M
is Sasakian space of constant @-holomorphic sectional curvature ¢ =
(¢c—3),(2) p=2and c=0, or (3) dim M=3 and p = (2 —¢).

Proof. We let M be a non-Sasakian contact (k,p)-space (k # 1).
Then we already know that (cf. [3] or [8])

kE+1—p

T 9(phX, X)? + g(hX, X)7]

@47 K(X,0X)=(1-2u)+

Thus, from (4.6) and (4.7), we can deduce the following three cases: (1)
k=1 (h =0) and M is a Sasakian space form, (2) £ < 1, p = 2 and
c =0, (3) If dim M = 3, then we see that g(phX, X)? + g(hX,X)% =
1/2(trace of h?). But, since h? = (k — 1)p? (cf. [3]), we have u =
(2—¢). O
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In the proof of Proposition 3.4, we see that for a Sasakian space
(whose structure is invariant under a pseudo-homothetic transformation)
the constancy of pseudo-holomorphic sectional curvature is invariant
under pseudo-homothetic transformations (indeed, ¢ = ¢/a, a > 0).
From (4.2), we also see that a (k,2)-space is invariant under a pseudo-
homothetic transformation and Iy, = 11\/—“_/—: = 0 > —1. Thus, due
to the classification theorem of a (k, u)-space in [5], we see that (k,2)-
space is pseudo-homothetic to Ty M (—1). For the three-dimensional non-
Sasakian (k, u)-space, the local classification is given in [3]. Further in [5]
E. Boeckx showed up there picture up to a pseudo-homothetic invariant
Ips, indeed there are SL(2, R) with Igyo,r) < —1or —1 < Ispo,r) < 1,
Thus, From Theorems 4.1 and 4.2, we have

COROLLARY 4.3. Let M be a pseudo-parallel contact strongly pseu-
do-convex CR-space. Then M is of constant pseudo-holomorphic sec-
tional curvature c if and only if M is pseudo-homothetic to one of the
following:

(1) the unit sphere S*"*! with the natural Sasakian structure with
co = 1 forc > 0, R**! with Sasakian o-holomorphic sectional curvature
co = —3 for ¢ = 0, or B™ x R with Sasakian p-holomorphic sectional
curvature co = —7 for ¢ < 0, where B™ is a simply connected bounded
domain in C™ with constant holomorphic sectional curvature —A4,

(2) the unit tangent sphere bundle of a space of constant curvature
~1, or

(3) a non-Sasakian Lie group with a special left-invariant contact
metric, SU(2), SL(2, R), the group E(2) of rigid motions of Euclidean
2-space, the group E(1,1) of rigid motions of the Minkowski 2-space.

The Sasakian structure (n,g) on R*™*!(z* 4% 2) (i = 1,...,n) is
given by the canonical contact structure

1 i
n= 5z} y'da')
and the Riemannian metric g given by the quadratic form
1 & . .
2 _ i\2 i\2
ds* = 2 @0+ _((da")?* + (dy")?)).

We know that the standard contact metric structure of the unit
tangent sphere bundle T3M (1) of a space of constant curvature 1 is
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Sasakian. However, we can check that it has neither constant ¢-holomor-
phic sectional curvature nor constant pseudo-holomorphic sectional cur-
vature. As stated already, unit tangent sphere bundles are (k, 11)-spaces
if and only if the base manifold is of constant curvature b with & = b(2—b)
and g = —2b. Thus, we have

COROLLARY 4.4. The standard contact strongly pseudo-convex CR-
structure of a unit tangent sphere bundle Ty M (b) of (n+ 1)-dimensional
space of constant curvature b has constant pseudo-holomorphic sectional
curvature c¢ if and only if

(1) b=—-1andc=0, or

(2) n=1and b=1/2(c — 2).

For a regular (i.e., the foliation defined by the vector field ¢ is regu-
lar) Sasakian space form M?™+1(co) of constant p-holomorphic sectional
curvature cg, the quotient M27+1(cq)/€ with the induced metric and the
complex structure J given by Jm. X = m.@X is a complex space form
M"™((co + 3)/4), where 7 : M — M/£ is the Riemannian submersion.
Closing this section we state

REMARK 4. (1) Three-dimensional non-Sasakian contact (k, yt)-spac-
es have constant ¢-holomorphic sectional curvature (cf. [3], [8]) and at
the same time constant pseudo-holomorphic sectional curvatures ¢ =
(2—p)-

(2) A contact (k,2)-space (k # 1) is non-Sasakian and of non-constant
@-holomorphic sectional curvature (see (4.7)), but has constant “pseudo-
holomorphic sectional curvature (with respect to the Tanaka-Webster
connection)”.

5. The curvature tensor of a contact strongly pseudo-convex
CR-space form

In this section, we study the curvature of a contact strongly pseudo-

convex CR-space form. Let M be a contact strongly pseudo-convex
CR-manifold. We put

C(X,Y)Z = R(X,Y)Z + g(RY, Z)hX — g(hX, Z)hY

for all vector fields X,Y,Z on M. Then we see that C is a (1,3)-type
tensor field on M. From this, by using the symmetries of the curvature
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tensor R and the symmetry of structure tensor h, we easily see that C
also satisfies the symmetries, that is,

(1) C(X,Y)Z=-CY,X)Z,

(2) g( (X’Y)Z’ W)= —g(C(X7Y)W’ Z),
3) 9(C(X,Y)Z,W) = g(C(Z2,W)X,Y),
(4)

4) C(X,Y)Z + C(Y,2)X + C(Z,X)Y =0.

Further, we see, together with (4.6), that M has pointwise constant
pseudo-holomorphic sectional curvature H(p), p € M, if and only if

9(C(X, ¢ X)X, X) = Hi(p)

for a unit horizontal vector X, where we have put Hy(p) = H(p) — 3.
First of all, from (2.9), we see that M satisfies

(5.1) (Vxp)Y = g(X +hX,Y)t —n(Y)(X + hX)

for all vector fields X and Y. Comparing with (2.7), it follows that a
contact strongly pseudo-convex CR-manifold is normal (or Sasakian) if
and only if h = 0.

Then we have the following

ProposITION 5.1. For all vector fields X,Y,Z on M,

(5.2) CX, Y=Y} (X +hX)-n(X)Y +hY)—-P(X,Y),

9(C(&, X)Y, 2)

(63 _ n(Z)g(Y + hY, X) —n(Y)g(Z + hZ, X) + g(¢P(Z,Y), X),

(5.4)
R(X,Y)pZ

= 9R(X,Y)Z — g(Y + hY, Z)(¢X + ¢hX)
+ 9(X + kX, Z)(¢Y + phY)
+ 9(eX + ohX, Z)(Y + hY) ~ g(¢Y + ¢hY, Z)(X + hX)
+9(P(X,Y),Z2){ ~n(Z)P(X,Y),
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and
C(X,Y)pZ - pC(X,Y)Z

(5.5) = R(X,Y)pZ — pR(X,Y)Z
+ g(hY, 0Z)hX — g(hX,0Z)hY
—g(hY, Z)phX + g(hX, Z)phY.

Proof. First, together with (2.3) we see that C(X,Y)¢ = R(X,Y)¢
and g(C(¢, X)Y,Z) = g(R(¢,X)Y,Z). But, from (2.6), (5.1) and the
fundamental symmetries of the curvature tensor, we compute R(X,Y )¢
and g(R(§, X)Y,Z). So, we obtain (5.2) and (5.3). The Ricci identity
for ¢ is given as

(5.6) R(X,Y)pZ — oR(X,Y)Z = (Vi y9)Z — (V¥ x9)Z,

where V% y = VxVy — Vy,y. From (5.1) we have

(Viye)Z =—g(Y + hY, Z)(pX + phX) + g(pX + ohX, Z)(Y + hY)
+9((Vxh)Y, 2)¢ = n(Z)(Vxh)Y,

and thus (5.4) and (5.5) follow easily from this, (5.6) and the definition
of the tensor C. a

Now, we prove

PROPOSITION 5.2. Let M be a contact strongly pseudo-convex CR-
manifold. Then the necessary and sufficient condition for M to have
pointwise constant pseudo-holomorphic sectional curvature H = H(p),
peEM,is

(5.7)
g(R(X,Y)Z,W)

= {#[(6 2) ~n(¥)0(2)) (a2, W) ~ n(X)m(W))
~ (90X, 2) = n(X)n(2)) (90, W) = (Y )n(W)) |
+ (H = 4)|g(pY, 2)g(0 X, W) — g(9X, Z)g(9Y, W)

—29(pX,Y)g(pZ, W)]}
+g(hY, Z)(g(X, W) — n(X)n(W))
~9(hX, Z)(g(Y, W) — n(Y)n(W))
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+9(hX, W) (g(Y, Z) — n(Y)n(Z))
—g(hY,W)(9(X, Z) — n(X)n(Z))
— g(phY, Z)g(phX, W) + g(ph X, Z) (whY W)

+n(X) [g(soP(W, Z) —n(W)pP(&, Z) — n(Z)pP(W,£), )]
= 0(¥)[9(¢P(W, 2) = n(W)¢P(¢, 2) ~ n(Z)pP(W,£), X)
+1(2)[g(pP(Y, X) = n(Y)eP(&, X) = n(X)oP(Y;£), W)]
= (W) |g(¢P(Y, X) = n(¥ )pP(& X) = n(X)¢P(Y,£), Z)]

—n(X)n(2)[9(Y + Y, W) = (¥ )n(W) + g(oP(,Y ), W)]
+0(X)n(W)[g(Y +hY, Z) = n(Y)n(Z) + 96 P, Y ), Z)|
+0(Y)n(2)[9(X + X, W) =n(X)n(W) + g(pP(E, X), W)]

— (V)W) [g(X +hX, Z) = n(X)n(Z) + (o P(€, X), 2)]
for all vector fields X,Y,Z, W in M.

Proof. For X, Y € D, using the fundamental properties of the tensor
C and the curvature tensor R, (2.1), (2.2) and (2.3), we obtain from
(5.4) and (5.5)

(5.8) g(C(X,pX)Y,pY) = g(C(X,9Y)Y,0X) + g(C(X,Y)pX, pY)
and

(5.9)
9(C(X,Y)pX,pY)

=g9(C(X,Y)X,Y)
—9(X,Y)? —29(hX,Y)? — 29(X,Y)g(hX,Y) + g(X, X)g(Y,Y)
+ g(X, X)g(hY,Y) + g(Y,Y)g(hX, X)
+2g(hX, X)g(hY,Y) — g(pX,Y)?
+29(phX,Y)? — 29(0hX, X)g(phY,Y).
Similarly, from (5.4) and (5.5) we get
9(C(X, pY )X, pY)
= g(C(X, Y)Y, pX)
+9(X,Y)? —29(hX,Y)? — 2g(0hX, X)g(phY,Y) — g(X, X)g(Y,Y)
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(5.10) — g(Y,Y)g(hX, X) + g(X, X)g(hY,Y)
+29(hX, X)g(RY,Y) + g(¢X,Y)?
+29(phX,Y)? 4+ 29(0X,Y )g(phX,Y)

and

(5.11)
g(CY, pX)Y, pX)

= g(C(X, pY)Y, pX)
+9(X,Y)? = 29(hX,Y)? — 29(phX, X)g(¢hY,Y) — g(X, X)g(Y,Y)
+9(Y,Y)g(hX, X) — g(X, X)g(hY,Y)
+2g(hX, X)g(hY,Y) + g(¢X,Y)?
+29(phX,Y)? — 29(0X,Y )g(0hX,Y).

We now suppose that M has a pointwise constant pseudo-holomorphic
sectional curvature H(p), i.e., for any X € D(p),

L(R(X, pX)eX,X) = H(p)g(X, X)*.
Then together with (4.5) we immediately get
(5.12) 9(C(X, pX)pX, X) = Hi(p)g(X, X)?,

where we have put Hi(p) = H(p) — 3. Substituting X by X + Y and
X —-Y for X,Y € D in (5.12) respectively, and summing them, we get
(5.13) 29(C(X, X )Y, Y) + C(R(X, oY )Y, X)
+29(C(X, pY )X, Y) + g(CY, o X)pX,Y)
= 2H:1{29(X,Y)* + g(X, X)g(Y,Y)}.
From (5.8), (5.9), (5.10), (5.11) and (5.13), we get
(5.14)
39(C(X;0Y)Y,0X) + g(C(X,Y)X,Y)
+2g(hX,Y)? 4+ 29(X,Y)g(hX,Y)
- g(X7X)g(hYa Y) - g(Y7Y)g(hX?X)
= Hi{29(X,Y)? + g(X, X)g(Y,Y)}.
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Replacing Y by ¢Y in (5.14) and using (2.1), (2.2) and (2.3), we have

(5.15) :
39(C(X, Y)pY, ‘PX) - g(C(X’ pY)X, QOY)

+49(phX,Y)? - 29(X, oY )g(hX, ¢Y)
+9(X, X)g(hY,Y) — g(Y,Y)g(hX, X)
+49(hX, X)g(hY,Y) — 4g(hX,Y)? — 4g(0hX, X)g(¢hY,Y)
= Hi{29(X, Y )* + (X, X)g(Y,Y)}.
From (5.15), together with (5.9) and (5.10), we get

(O 1YY, X) + 9O, 1), )
+29(X,Y)? +49(hX,Y)? + 6¢(X,Y)g(hX,Y) — 29(X, X)g(Y,Y)
- 39(X,X)g(hY,Y) — 3g(Y,Y)g(hX, X) — 49(hX, X)g(hY,Y)
+29(X, 9Y)? — 4g(0hX,Y)? + 49(phX,Y)g(phY,Y)
= H1{29(X, Y )* + g(X, X)g(Y,Y)}.
From (5.14) and (5.16), we have
(5.17)
49(C(X,Y)Y, X)
= (H1 +3){g(X, X)g(Y,Y) — g(X,Y)?} + 3(H; — 1)g(X, ¢Y)?
~2{29(hX,Y)? + 49(X,Y)g(hX,Y) — 29(X, X)g(hY,Y)
-29(Y,Y)g(hX, X)
—2g9(hX, X)g(hY,Y) - 29(phX,Y)? + 2g(ph X, X )g(phY,Y)}
for all X,Y € D. Substituting X = X + Z in (5.17), we obtain

(5.18)
49(C(X, Y)Y, Z)
= (H1 +3){9(X, Z)g(Y,Y) - g(X,Y)g(Y, Z)}
+ 3(H1 — 1)g(X, 9Y)g(Z, oY) — 4{g(hX,Y)g(hY, Z)
+ 9(X,Y)g(RY, Z)
+ g(Y7 Z)g(hX’ Y) - g(X7 Z)g(hY’ Y) - g(Y7 Y)g(hX’ Z)
—g(hX,Z)g(hY,Y)
— g(phX,Y)g(phZ,Y) + g(whX, Z)g(phY,Y)}.
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If we substitute Y = Y +W in (5.18) again and use (2.3), then we obtain

(5.19)

4{g(C(X, YW, Z) + g(C(X, W)Y, Z)}

= (H1 +3){29(X, Z)g(Y, W) — g(X,Y)g(W, Z) — g(X,W)g(Y, Z)}
+3(Hy — D{9(X, Y )g(Z, W) + g(X, pW)g(Z,¢Y )}

— M g(hX,Y)g(hZ, W) + g(hX, W)g(hZ,Y) + g(X,Y)g(hZ, W)
+g(X,W)g(hZ,Y) + g(Z,Y)g(hX, W) + g(Z,W)g(hX,Y)

- 29(X, Z)g(hY,W) — 2¢9(Y,W)g(hX, Z) — 29(hX, Z)g(hY, W)
— 9(phX,Y)g(phZ, W) — g(phX,W)g(phZ,Y)

+2g(phX, Z)g(ehY, W)}

and we have

(5.20)

A g(C(X, Z)W,Y) + g(C(X,W)Z,Y)}

= (H1+3){2¢9(X,Y)g(Z, W)

- 9(X, 2)gW,Y) — g(X,W)g(Z,Y)}

+ 3(H1 — D{g(X, Z)g(Y, W)

+ 9(X, oW)g(Y,9Z)} — 4{g(hX, Z)g(RY, W) + g(hX, W)g(hY, Z)
+ 9(X, Z)g(hY, W) + g(X, W)g(RY, Z) + g(Y, Z)g(h X, W)

+ g(Y,W)g(hX, Z) — 29(X,Y)g(hZ,W) — 29(Z,W)g(hX,Y)
—29(hX,Y)g(hZ, W) — g(phX, Z)g(phY, W)

— glphX, W)g(ehY, Z) + 29(phX,Y)g(phZ, W)}.

We subtract (5.20) from (5.19). Then by using the Bianchi-type identity
for the curvature-like tensor field C and (2.3), we get

(5.21)

49(C(X,Y)YZ, W)
= (H1+3){g(Y, Z)g(X, W) — g(X, Z)g(Y, W)}
+ (Hy — D{g(¢Y, Z)g(p X, W) — g(pX, Z)g(¢Y, W)
—29(0X,Y)g(0Z, W)} :
+4{g(hY, Z)9(X, W) — g(hX, Z)g(Y, W) + g(Y, Z)g(hX, W)
—9(X, Z)g(hY, W) + g(hY, Z)g(hX, W) — g(hX, Z)g(hY, W)
— g(phY, Z)g(phX, W) + g(phX, Z)g(phY, W)},
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where X, Y, Z,W € D(p). We now let X be an arbitrary vector field on
M. Then we may write

X =XT +n(X),

where X7 denotes the horizontal part of X. Then we have for all vector
flelds X,Y, Z, W in M:

(5.22)
g(C(X,Y)Z,W)

=g(CXT,YT)Z",WT) + n(X)g(C(&, YT 2", WT)
+n(Y)g(C(XT,6) 2T, WT) +n(Z)g(C(XT,YT)e, WT)
+n(W)g(C(XT,YT)Z, &) +n(X)n(2)g(C £, YT)E, WT)
+77(X)77(W)g( (&, YT)ZT, &) + n(Y)n(Z)g(C(XT,£)¢, WT)
+n(Y)n(W)g(C(XT,8)27,¢).

Furthermore, from (5.22), by using (5.2), (5.3), (5.21) and straightfor-
ward calculations, we obtain (5.7). O

From (5.7), by using (2.4) and (2.5), we find for the Ricci tensors:
(5.23)

PXY)(= D 9(Ble;, X)Y, &)

= (et 1HE) - 1) (9(x,Y) - n(X)n(Y))
+ (2n —1)g(hX,Y) + g(hX,hY) Zg (pP(es, Y), e;)
+0(Y) 3 g(pP(X, e:), ) + 9(pP(€, X),Y)

+n(X)n(Y)(2n + tr A?)

for all vectors X and Y in T, M, where {e;} (i =1,2,...,2n+ 1) is an
arbitrary local orthonormal basis for T, M. Since the trace of h vanishes,
from (5.23), we have for the scalar curvature:

— Zp(ei,ei)) = n((n+ 1)H - 4) +2n — tr h2,

where we have used 3, g(¢P(e;, £), e;) = tr hZ.
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6. Schur-type theorem for a contact strongly pseudo-convex
CR-space form

Let M be a pseudo-parallel contact strongly pseudo-convex CR-mani-
fold. Then, since we already know that the pseudo-parallel h is equiva-
lent to the n-parallel A, it follows that

g(Vxrh)YT, Z7T)
= g(Vx—nx)eM)(Y = n(Y){, Z —n(Z2)¢)
= 9((Vxh)Y, Z) = n(X)g((Veh)Y, Z) —n(Y)g((Vxh)¢, Z)
- 1(Z)g((Vxh)Y, &) +n(X)n(Y)g((Veh)E, Z)
+n(Y)n(Z)g((Vxh)§, &) +n(Z)n(X)g((Veh)Y, )
= n(X)n(Y)n(Z2)g((Veh)§, &)

From the above equation, by using (2.3), (2.4) and (2.5), we have

(Vxh)Y = g((h — B*)oX,Y)E + (Y )(h — h?)pX

(6.1) + (X)) (@Y — @lY — oh®Y)

for all vector fields X and Y. Before we prove the Schur-type theorem
we prepare [6].

LEMMA 6.2. Let M be a pseudo-parallel contact strongly pseudo-
convex CR-manifold. Then the eigenvalues of h are constant.

Moreover, from (6.1), we have

(6 2) P(X’ Y) = - 9((80h2 + hz(p)X’ Y)£
' +n(Y)(he — o+ o)X —n(X)(hg — ¢ + @)Y,

(6.3) eP(X,Y) =n(Y)(h—¢* = DX —n(X)(h — o> - 1)Y.

We prove a Schur-type theorem for this class. Namely,

THEOREM 6.3. Let (M?"*1:n L) (n > 1) be a pseudo-parallel con-
tact strongly pseudo-convex CR-manifold. If the pseudo-holomorphic
sectional curvature (with respect to the Tanaka-Webster connection) at
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any point of M is independent of the choice of pseudo-holomorphic sec-
tion, then it is constant ¢ on M and the curvature tensor is given by

(6.4)

g(R(X,Y)Z, W)
o(Y, Z) = n(¥)n(2)) (9(X, W) — n(X)n(W))
2) = n(X)(2)) (oY, W) = n(¥ n(W) |

—4) [g(wY, Z)g(eX, W) — g(pX, Z)g(pY, W)

-2
(
+ (c

(
- g(X,
4

—29(pX,Y)g(0Z, W)} }
+ g(hY, Z)(g(X, W) — n(X)n(W))
— g(hX, Z)(g(Y, W) — n(Y)n(W))
+g(hX, W) (g(Y, Z) — n(Y)n(Z)) — g(hY,W)(9(X, Z) — n(X)n(Z))
— g(phY, Z)g(phX, W) + g(whX, Z)g(phY, W)
—n(X)n(Z)g(lY, W) + n(X)n(W)g(lY, Z)
+n(Y)n(Z)g(1X, W) —n(Y)n(W)g(1X, Z)
for all vector fields X,Y,Z,W in M.

Proof. Suppose that M has pointwise constant pseudo-holomorphic
sectional curvature H. Then, taking account of (6.1), (6.2) and (6.3),
from (5.23) we obtain '

(6.5) |
p(X,¥) = ¢ ((n+ DH - 4) (45,Y) = n(X)n(v)
)

+2(n—1)g(hX,Y)+ g(A*X,Y) + g((¢* + )X,Y)
T (X)n(Y)(2n — tx B2),
(6.6) n(n—l—lH 4)+2n—trh2
From (6.1) and by using (2.4) and Lemma 6.2, we have
(Vxp)(Y,2)

= 5 (4 0xm) (sv,2) - (¥ )(2)

— 5 ((n+ ) H — 2) (Tx)(V)1(2) + (V)T x0)(2))
+2n— 1)(g(Vxh)Y, Z) + g(VxH)Y, 2)
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+ (Txn)(Y)n(Z) +n(¥)(Vxn)(Z) + g(TxDY, Z)
+ (20 = tr 1) ((Vxm)(V)n(2) +n(¥)(Vx0)(2) ),

which yields

(6.7)
S (Vep)(X, )

%

= 500 DIKH) = EHO0) + 3 o((Ve Koo
= 300 DICCH) = (€]} = o o((VxR)E s
- Zg((V&R)(ei,X)§>6i)

= S+ D{(XH) = (B0} + (Vxp)(6,6) — (Vep) (X, 6)
= S+ D{(XH) ~ (€Hm(X)),
where we have used the 2nd Bianchi identity. By the well-known formula

Vxr=2 Z(Veip)(Xv ei)

for any local orthonormal frame field {e;} (1 =1,2,...,2n+ 1) and by
using (6.6), (6.7) and Lemma 6.2, we have

(n+ 1D){XH- (EHm(X)} =n(n+1)XH.

This says that £H = 0 and (n — 1) X H = 0. Since n > 1, we see that H
is constant, say c¢. By applying (6.1), (6.2) and (6.3) in Proposition 5.2,
we obtain (6.4). O

So, from the proofs of Proposition 5.2 and Theorem 6.3, we have

THEOREM 6.4. Let M be a complete and simply connected pseudo-
parallel contact CR-space. Then M is a contact strongly pseudo-convex
CR-space form if and only if the curvature tensor R is given by (6.4).

We note that a contact strongly pseudo-convex CR-space form is a
proper extension of a Sasakian space form (h = 0). Since we already
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know that a pseudo-parallel contact CR-space is a (k, pt)-space, from the
results in [4], we see that a pseudo-parallel contact pseudo-convex CR-
space form has a locally homogeneous contact Riemannian structure and
is a locally p-symmetric space in the strong sense. (We refer to [4] or
[7] for the definition of a locally ¢-symmetric space in the strong sense.)
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