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ANALYSIS OF A MESHFREE METHOD FOR
THE COMPRESSIBLE EULER EQUATIONS

YONGSIK KiM AND DAE-HYEON PAHK

ABSTRACT. Mathematical analysis is made on a meshfree method
for the compressible Euler equations. In particular, the Moving
Least Square Reproducing Kernel (MLSRK) method is employed
for space approximation. With the backward-Euler method used
for time discretization, existence of discrete solution and it’s L2-
error estimate are obtained under a regularity assumption of the
continuous solution. The result of numerical experiment made on
the biconvex airfoil is presented.

1. Introduction

The objective of this paper is to develop the mathematical back-
ground for the SUPG (stream-line upwind Petrov Galerkin) formulation
of the MLSRK (moving least square reproducing kernel) method for
the compressible Euler equations. The discretized MLSRK equations in
the conservative variable form are solved using the backward-Euler time
discretization. The resultant approximate discrete solution is shown to
converge to the continuous solution under a smoothness assumption in
this paper. Such smoothness is guaranteed for the local time interval
by the works of Kato [7] and Lax [9]. The strong solvability shown for
the compressible Euler equations can be generalized to the general hy-
perbolic equations. However, the global solvability of the compressible
Euler equations in two or three dimension is not known until now.

Several meshfree approximations were proposed with a variety of ap-
plications. Examples are the Smoothed Particle Hydrodynamics (SPH)
by Gingold and Monaghan [4], the Reproducing Kernel Particle Method
(RKPM) by Liu et al. [13], [14], the Diffuse Element Method (DEM)
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by Nayrole et al. [20], the Element Free Galerkin Method (EFG) by
Belytschko et al. [17], the Partition of Unity Finite Element Method
(PUFEM) by Babuska and Melenk [19], the Moving Least Square Re-
producing Kernel Galerkin Method (MLSRK) proposed by Liu et al. [15],
and the Fast Moving Least Square Reproducing Kernel Method (FML-
SRK) by Kim and Kim [8]. In this paper, the Moving Least Square Re-
producing Kernel Galerkin Method (MLSRK) proposed by Liu et al. [15]
is considered to solve the non-stationary compressible Euler equations.
One distinct advantage of this method over the standard finite element
method is that it requires simple distribution of nodes, not the com-
plex mesh generation dependent on the geometry of the flow domain.
Another advantage is that the desired regularity of the approximate so-
lutions can be readily achieved by introducing suitable basis functions
with sufficient regularity.

Though there have been much interest in developing meshfree meth-
ods for the Garlerkin formulation of the partial differential equations
in engineering, mathematical analysis on the existence and convergence
criterion of discrete solutions has been hardly made yet. In papers [1]
and [2], the solvability and convergence of discrete solutions have been
shown for the incompressible Stokes and Navier-Stokes equations. In
this paper, the solvability and convergence property of the approximate
solution is derived for the non-stationary compressible Euler equations
in the short time period. It is noted that such a convergence analysis
seems not possible in the framework of the continuous piecewise linear
FEM.

As a benchmark test, a numerical example is made in two dimen-
sions using the non-stationary compressible Euler equations. The model
problem is the symmetric flow over a biconvex airfoil. To show the
convergence, relative errors are depicted from the node distribution.

For the analysis to be followed, we define B, (x¢) = {x : |z —zo| < r}.

We let & be an integer and p > 1 be a real number. We define the
1/p
Sobolev norm ||ullwrr) = |Dja<x J |V¥ulPdz|  and introduce the
-Q

standard Sobolev space W¥P(Q) by the set of all LP functions whose
weak derivatives up to order k exist and W*P norms are finite. Also
Wé“ P(Q) is the closure of C§°(2) for the W*?(Q) norm. When p = 2,
we denote H*(Q) = W*2(Q) and HE(Q) = Wéc’z(ﬂ). Throughout this
paper ¢ stands for a generic constant which varies in each occurrence.
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2. Compressible Euler equations

For a domain © in RV, N = 2 or 3, we consider the Euler equations
N
(2.1) u+ > (F(w), =R, z€Q,t>0,
i=1
where u(z,0) = ug(z), u(z,t) = p(1,v,e)T. Here p is the density,

v = (v1,...,un)7 is the velocity, e is the total energy density, and F* is
the Euler flux in the form

1 0
‘ v1 d1i
Fr=pui| - [+p] - |,
UN Oni
[ (%3

where p is the pressure. The source vector R is defined by

1
by

by
bivi +
where b = (by,...,by)7 is the body force vector and 7 is the heat supply.
The necessary constitutive relations are

1 (&
_ 2
e= 3 (;vl> + ¢, 0,

p= (,Y - 1)/)0,,9,
for the ideal gas, where ¢, is the specific heat at constant volume, 8 is the
absolute temperature, and -~y is the ratio of specific heat. The relation
between the primitive variables and the state vector is, for N = 3,
Uy _u3 s

U2 = ) v3 = ’
u; uy

p=u, U1= )
uj
_ 2wjus — (u} +uf+ud)

20,,u% ’

2 2 2
u; +uz+u
p=(y—1) <u5_M).

2111
We now state the local existence theorem based on the work of
Kato [7] and Lax [9]. For this purpose, we introduce the integer Sobolev

0
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space H*(RM) with norm ||g||2 = 5> [ |D%|%dz. Also we introduce

lof<sRN
L*°([0,T] : H®) with norm |ulls7 = maxo<i<T ||u(t)|s, and Lip(RY)
with norm ||ul|rip = |[u||L 4+ sup LEW Now we suppose that the
2y

flux vector F satisfies the assumption of symmetric hyperbolicity for
all u such that there is a positive symmetric matrix Ag(u) smoothly
varying with u so that

a) col < Ag(u) < ¢;'I, Ag = Al with a constant cq uniformly for u.

b) Ao(w)A;(u) = A;(u), with A;(u) = A;(u)’ for j = 1,...,N,

where Aj(u) = Dg;j).

THEOREM 1. (Kato [7] and Lax [9]) Assume up € H®, s > & + 1.
Then there is a time interval [0,T] with T > 0, so that the Euler equa-
tions (2.1) has a unique classical solution u(z,t) € C1([0,T] : H*™1).
Furthermore, u € C([0,T] : H*) N CY([0,T] : H*') and T depends on
[[uls.

The compressible Euler equations satisfy the symmetric hyperbolicity
conditions a) and b). Since we develop the convergence theory for the
general hyperbolic equations, we do not specify the symmetrizer Ag for
the compressible Euler equations. Since the general global existence is
not known, some a priori regularity assumptions are imposed for our
convergence theory.

3. Numerical scheme

We briefly introduce MLSRK approximation scheme. We refer [15]
and [1] for the detail. Let Q be a bounded domain with smooth boundary
and u(z) be a smooth function defined in Q. For convenience, we let
u(z) =0 if z ¢ Q. To achieve m—th order consistency, we introduce the
set of all basis polynomials of order less than or equal to m

Pr(z) = {Polz) =27* - 25" ||| =01 + -+ - + ap <m}.
The number of all entries in Pp(z) is % To obtain localized ap-
proximations of a function u(z), we need a nonnegative window func-

tion ® which has a compact support, say, supp® C Bi1(0). We set
Q, = {z : dist(z,Q2) < p}. We introduce a localized error residual
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functional

Ja@) = [
Q

1
where ®,(r — Z) = EE‘I) (

() - P (‘C — x)  a(z)

T—Z

0
The coefficient vector a(Z) at which the quadratic functional J(a(Z))

is minimized, satisfies

[72(22) - (552w

For further development we define the moment matrix M (Z) such that

(3.2) M) Eh/Pg; (x—j)Pm (I;‘E>¢Q(x—f)dx.

). Here 7 is a fixed point in 2.

0

Since the polynomial basis P,(z)’s are linearly independent, M(Z) is
always invertible and det M (Z) > 0. Consequently we find the minimizer
of the moving least functional J(a(Z)) such that

a(z) = M~(z) Q/ Pr (““” ; z >u(x)<1>g(a; - Z)dz,

and obtain the following approximation of u(x),

7 (5 )i Q/ PL (2 Yoty - a) do

For z € €2, an arbitrary point in Q for the weighted least square
procedure, we let T be equal to z and obtain a global approximation of
u(z). The novel point in MLSRK is the choice Z = z. More precisely,
the global approximation operator is defined by

(3.3) Gu(z) =U(z,x)
= POV @) [P (5 ) w2l — ) o
Q

Introducing the correction function

Cloy ~.) = PO o)Ph (125,
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we can define the shape function
Koty —z,2) =C(o,y — z,2)P,(y — 2).

The global approximation (3.3) can be written in a convolution form
(3.4) : / Ko Ju(y) dy.

This formulation is the so-called reproducing kernel formulation by Liu
et al. [13]. It satisfies m—th order consistency, namely,

(3.5) Gu(z) = u(z)
if u(z) is a polynomial of order less than or equal to m.

REMARK. The m—th order consistency can be generalized by in-
serting any function ¢ into the set of basis polynomials P,,. Then the
reproducing kernel approximation (3.4) reproduces linear combination
of m—th order polynomials and ¢.

We define the discretized shape function to analyze the MLSRK
method for the Euler equations. For a given set of nodes A = {z;|i =
1,..., NP}, employing discretized moment matrix

AL T — T T — T
S (2 )e (2o
i=1 e
we define the discretized shape function
(3.6) Kg(x—a:i,m) =C"o,x — x5, 2)®,(z — ;)

— PO)(M") " ()T (

T — X3
0

o2

Now this set of discrete shape functions are used as MLSRK shape func-
tions, which is called simply shape functions if there is no confusion. Also
we will denote briefly K}(z — @;, ) as ¢;(z) for the window function ®.

In the finite element method, the mesh generation follows quasi-
uniform or reqular condition. Similarly, we have the following condition.
Since there is a close relation between node distribution and shape func-
tions, we consider regular node set and admissible set of shape functions.

DEFINITION 1. Let A = {x;]i = 1,..., NP} be the set of nodes. We
define A be a regular node set if the followings hold.
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i) There exists Cq > 0 independent of NP such that
min hg, > C1 maxhy,,
7 7
where hg, = minjy; |2; — z;|.
ii) There exists C, > 0 depend only on g > 1 such that
min N (7, o) > Cp, max N(3, o),
K2 [

where N (i, g) be the number of nodes contained in Byp, (%:).

DEFINITION 2. Let A = {¢;|¢ = 1,..., NP} be the set of MLSRK
shape functions generated by the window function & for the regular node
set A ={z;li =1,...,NP}. Then A and A are admissible if there is a
positive constant By such that

n NP

(3.7) >3 [odyduatas = polal?
a=lij=1§
for all a® e RNP oo =1,...,n.

Note that the above regular condition for node set implies an over-
lapping condition of shape functions, that is, sufficient number of node
points belong to the support of each shape function ¢; to ensure the
stability of the moment matrix. In short, the regular condition implies
certain uniform condition for the node distance and support radius of
shape functions. In making shape function, dilation parameter ¢ and
node distance h are depend on each x;, but with assuming regular node
distribution, we may consider ¢ and h as independent parameter with
respect to each z;.

For the convergence analysis, we need interpolation error estimate
between the solution space and the projection generated by the set of
shape functions. We introduce the discrete projection and projection
error estimate, which are studied in [8, 15].

DEFINITION 3. Let A = {¢;|¢ = 1,..., NP} be the set of MLSRK
shape functions generated by the window function @ for the regular node
set A = {x;|i = 1,..., NP}. Let u(z) € C°(2) be a function and ¢ > 0
a real number. We define the discrete projection as

NP .
() =Y ul@m)dilm) = Y ulm)dil@),
i=1 SL‘,‘EA(E)

where ¢;(z) = KMz —=;,2) asin (3.6) and A(z) = {z; € Alz € supp ¢;N
Q2}. Here, m denotes the order of generating polynomial basis Py, o is
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the dilation parameter which is the characteristic radius of the support
of window function ®,, and h stands for the distance between the nodes.

THEOREM 2. Assume the window function ®(x) € CF'(R™) and
v(z) € C™T(Q), where Q) is a bounded open set in R*. Let A =
{zs/i = 1,..., NP} be a regular node set and A = {¢;|i = 1,..., NP}
be the set of admissible shape functions. Suppose the boundary of Q is
smooth and suppg; N Q) is convex for each i. If m and p satisfy .

n
m>— —1,
p

then the following interpolation estimate holds
(3.8)
H'U — RZ,Lh Ullwk,p(g) S Ck Qm+1—k |IUHWm+1,p(Q), for all 0 S k < m.

4. Application of the MLSRK method to the Euler equa-
tions

We consider the non-stationary compressible Euler equations with
zero body force. We will show the existence of MLSRK discrete so-
lution for all time. Also we show the L?-convergence theorem under
the regularity assumption of the true solution. From Theorem 1, we
can say that the true solution has sufficient regularity for a short time
period. Hence our convergence theorem is valid for that time period,
too. Throughout this section, we assume that € is a bounded smooth
domain in RY (N = 2,3) and Ty represents the time for existence of reg-
ular solution from Theorem 1. Let A = {¢; |7 =1,..., NP} be the set
of MLSRK shape functions generated from the window function ® with
m-th order consistency for the regularnode set A = {z;|i =1,...,NP}.
Using MLSRK method in space and backward Fuler method in time,

we want to find a discrete solution U" = fi’j C! ¢; satisfying
(4.9) / U™ grdz — At / F (U™ (84 )z dz = / U rdz,
Q Q Q

NP
Uz) = Zuo(mi)fﬁi(l")-
i=1

Here we do not specify the boundary condition. Since a solution to hy-
perbolic system has a finite propagation speeds, we assume our solution
has compact support, namely, supp(U(t)) CC Q and supp(u(t)) CC €.
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For computational simplicity, we assume F!(0) = 0, which can be
achieved by adding a constant vector.

Now we prove the existence and the convergence theorem under the
smoothness assumption of u. By Theorem 1 again, such a smoothness
assumption is guaranteed for a short time as long as the initial data is
smooth. Global convergence theorem is not known for two or three di-
mensional Euler equations. We introduce the CFL (Courant-Friedrichs-
Lewy) condition

At
(4.10) A= — <,

where g is the dilation parameter of the shape function. Firstly, we show
the existence of discrete solution to equation (4.9), which follows from
simple application of the implicit function theorem.

THEOREM 3. Suppose Fi’s, (i = 1,...,N) are Lipschitz functions

with SN |F¥| iy < M for some M > 0. Then if X < C, where C is
independent of ¢ and At, then there is a unique solution to (4.9).

Proof. Tf U™ = $"NF' g, is a solution to (4.9), then we have

NP NP

S| [osan| cptioae [8 (S crti; | (9e)ndo
Q

=1 j=1
(4.11) @V

NP
-3 / brdy dz | CP,
i=1 Q

fori=1,...,Nand k=1,..., NP. From the admissibility assumption
on A= {¢;j|j=1,..., NP}, we get My; = (f ¢>k¢jdx> is symmetric
positive definite so that g

(4.12) T My; C™ > qo|CPH 2,

for some ap > 0 . Moreover, since |V | < g, we get

) NP At N ) NP
At [F (3565716, | (8u)ayda] < SIS Flasy [ |, do
A j=1 ¢ = & li=t
< B ooy,

o
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Now, using this implicit function theorem, we prove that there is a
1
solution to (4.9), if c%]\/l |2 < @ or equivalently A < Eﬁ?ﬁg The

uniqueness follows from the implicit function theorem.

To show convergence of the discrete solution to the true solution, we
assume that '

N
(4.13) Y (PGl + [Fuyllze) < M,

i=1

where Fy, = g—]’;. Physically, we may assume that density p of the fluid
has lower bound in the Euler equations (2.1). Hence the assumption
(4.13) is reasonable at least for the Euler equations (2.1). Since the
existence of the true solution is not known in higher dimensional case,
we consider only the case of short time interval from Theorem 1. Then
we have,

. (4.14)

sup (lu(-, )| oo, [ws (s )llpees VUl )| oo, [V (-, )| o) < Co,
0<t<Ty

for sufficiently smocth ug, say ug € C®°. We denote u((n+1)At) = u™*!
and assume

@1s)  max (UGl [TU ) < Co,

where AtNg = Ty. Since our MLSRK discrete solution is smooth in
space and we are considering fixed small interval of time, the above
assumption (4.15) is justified. By defining

R, : = u((n + 1)At) — u(nAt) + At [F(u((n + 1)At))]

T
(n+1)At

= [ (e 180) - F ), dn
nAt 13
we get our error equation
(4.16) [Un+1 _ un-{-l] + At [Fi(Un-H) _ Fi(un+1)]
=U"-u"-R,.

T
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From the mean value theofem, we have
i+l i (1l
[F (U™ - F*(u" )]%
— [Fz ( n+1) . (Un+1 — un+1)]

(4.17) [/ / u(asU™! 4 (1%— as)u™t) dsda -

. (Un+1 _ un+1)(Un+1 _ un+1)
z;

Hence by introducing the symmetrizer Ag(u™*!) for FZ (u™*1), and from
(4.16) and (4.17) we obtain

(4.18)
/(Un+1 _ un+1) i Ao(un+1)(Un+1 _ un+1) dr

= — At /(U?H—l _ un+1) . Ao(u"+1) [Fﬂ(un-}'l) . (Un+1 _ un+1)]m.
Q

o At/(Un—{—l n+1 n+1) l:/ / aSUn—I—l
Q

+(1- as)un+1) dsdo - (Un+1 - un+1)(Un+1 - un+1)]1'i dz

+ /(Un-H _ un+1) . Ao(un+1)(Un —u" - R,n) dr
Q
=I+II+1II.
We introduce the weighted L2-norm
3
(4.19) Hu”L2,A3“ = /uAg(u"+1)u dx
Q

Estimation of U™ —u™*| 5 ap+1 shall be made using the equation
(4.18). Note that the weighted L?-norm || - || L2,an+! IS equivalent to the

standard L2-norm ||-||;2, since the matrix norm of Ag is bounded below
and above.
Now, we are ready to state and prove our main theorem.

THEOREM 4. Suppose Fi’s, (i = 1,...,N) satisfy (4.13) for some
M > 0. Let Ty be the time for the existence of regular solution from
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Theorem 1, for ug € C*°. We assume (4.15) for the MLSRK discrete
solution. If \ = &t < ﬁ%, then there is C1 depending only on A and
¢

e
Cy such that
(U™ —u™) (-, T)| 2 < Croe™ [0l +¢],
where Cy is in (4.15) and «y is in (4.12).

Proof. From the equation (4.18), since Ag(u™!)Fi(u"*!) is a sym-
metric matrix, we get

(4.20)
J=— At/(Un+1 _ un+1) . AO( n+1) [Fz ( n+1) X (Un+1 _ un+1)]zi dx
Q
At /(Un+1 n+1)i [A (un+1)Fi (un+1)] . (Un-‘rl _ un+1) dx
2 6371 0 u
Q
- At/(U"+1 —u™) Ag(ut ) FE L (u) (ut ), (UM —ut ) do
Q

< eM||Vu g AtU™ — w7

Here the constant ¢ only depends on ||Ag|lci. In a similar way, the
term II in (4.18) becomes

(4.21)

II = —-At/(Un+1 n+1 n+1 / / aSUn+1

Q
+(1- as)un+1) dsdo - (Un+1 _ un+1)(Un+1 _ un+1)] da

Z;

< eAtM (| V| + [VU™ | 1eo) U™ — uHY[2,,

Here, the constant ¢ depends only on ||Agllc1. Since Ag(u™t!) is sym-
metric positive definite, the term 1] in (4.18) becomes

/(Un+1 _ un-{-l) . Ao(un-H) (Un _ un) dx
2
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[N

IA

/(Un-i-l _ un+1) i Ao(un+1) (Un+1 _ un+1) dr
L2

[

)=

/ (U™ — u") - Ag(u™) (U™ — u™) d
L
From the Hélder inequality, we have

/ (U™ — ™) - Ag(u™ ) Rodz < ||Rn 2 [[U! — w12,
Q

and from the mean value theorem, we have

(n+1)At ] )
R, = / [Fi(u((n + )AL) — Fi(u(r))], dr

At i
< eM ([Jug]| o= ([ Vull oo + [ Vgl o) A2,

where c is the absolute constant. Since ||- || L2,AnH is equivalent to ||-|| 2,
we have

(4.22) III< (HU” —u"| 2 gnir + cMAtz) U™ —u™ | 12,Am+)

where ¢ = c([| Ao, [lus(| L=, [[Vul| oo, [[Vue|| oo, [2]).
Combining (4.18), (4.20), (4.21), and (4.22), we have

[untt — u"+1||L2’A3+1 (1 - et MAt) < [[U" = u®|a pne1 + coMAt?,
where ¢; = ci1(u, Ag) and ¢z = ca(u, Ay, [§2]). Using the bound
[U™ — w2 g
_ / (U™ = ") Ag(u™1) (U™ — u™) da

Q
< U = w2y + M Ao [U™ = w72 o,

where ¢ = ¢(||Agl|), we have
U™ — a7 o e < (14 cAL)2 U™ — u"|| 2 a5 + X202
Iterating this, we get

U™ = ull2ap < (1+eADF [JU° = 0012 ag + %07 .
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If we set Ty = NoAt, then for n < Ny
(1+cAt)T ~ T,

and
[0 — w2, < T [IU° - w¥liz2 a9+ cAe] -

Hence by Theorem 2, the present theorem follows, in case Ul is Hl-
projection,

U = u®|| 2,49 < collu®lln- U

In Theorem 4, we have shown that the approximation errors of ML-
SRK discrete solution decrease as the number of nodes is increased.
Though the present convergence analysis was made for a short time in-
terval, the following numerical example shows that convergence of suc-
cessive errors persists for a sufficiently long time. For one dimensional
scalar conservation law, the existence of global solution in BV-space
(functions of bounded variations) is known. In this case, the shock re-
gion is a measure zero set; our analysis thus appears to explain the
convergence even for a long time.

Bi-convex airfoil flow

FIiGURE 1. Problem statements

5. Numerical example

The numerical experiment consist of a supersonic flow over a sym-
metric biconvex airfoil. The MLSRK for space discretization and the
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backward Euler method for time discretization are employed. To solve
the nonlinear vector equation, the Bi-CGM (Bi-Conjugate Gradient
Method) is used.

i 7
(a) t=0.2 (b) t=1.0
W W .
(c) t=2.0 (d) t=4.0
T R J
(e) t=8.0 (f) t=16.0

FIGURE 2. Pressure of biconvex airfoil flow

We consider a thin symmetric biconvex airfoil in an initial uniform
flow field. The airfoil is given by a parabolic arc, 22 = 3b(1 — 42?) as in
Figure 1. The maximum airfoil thickness scaled by the chord length is
b = 0.08.

Following free stream values are taken with My, = 1.4 :

1.0
O = 105 ul,oo = 147 u2,00 = 00) P = 77

where the specific heat ratio v = 1.4. On the symmetric free boundary
(z2 = 0), we impose uz = 0 . On the surface of airfoil, the velocity

vector is tangential to the surface and hence E—f = —gg—f. Assuming a thin
airfoil, we replace u; by its free stream value u; o, and up = ul,oog—z% =

—4bzi1u; o on the surface of airfoil. We impose 0 = goo, U1 = U1 o0,
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Uz = Uy o0, € = oo 0N the inflow boundary, and uz = uz, on the upper
boundary. No boundary condition is imposed on the outflow boundary.

Figure 2 depicts the time development of stationary shock in the flow
field. We observe that the leading edge shock is reflected from the upper
boundary to interfere in its course with the trailing edge shock. This
leading edge shock is reflected once again on the central free boundary
to merge with the trailing edge shock. For this computation, a uni-
form 121 x 41 node set is used in the computational domain. To show
convergence of the present scheme graphically, the relative errors are
plotted in Figure 3. Four different uniform node sets are used: case
I(31 x 11 nodes), case II(61 x 21 nodes), case I11(91 x 31 nodes), and
case IV (121 x 41 nodes).

03
A
0.25
E 0.2
= o015
I~ B
=~ o1
C
0.05
0 " i L I 1 1 L L L . L i L L 1
0 5 10 15 20

Time
FIGURE 3. Relative errors depending on the node numbers

The three curves A, B and C in Figure 3 represent the L2-errors
U =0 || 2, |[UY = UM 12, and ||UHT —UTV|| 2, respectively. Here
U!, U/, UM and UV stand for the solutions obtained using the in-
dicated node set. Since the shock region has a small measure in the
computational domain, the present results are consistent with our con-
vergence theory given by Theorem 4.
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